A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome sequence assembly algorithms and misassembly identification methods. | LitMetric

The sequence assembly algorithms have rapidly evolved with the vigorous growth of genome sequencing technology over the past two decades. Assembly mainly uses the iterative expansion of overlap relationships between sequences to construct the target genome. The assembly algorithms can be typically classified into several categories, such as the Greedy strategy, Overlap-Layout-Consensus (OLC) strategy, and de Bruijn graph (DBG) strategy. In particular, due to the rapid development of third-generation sequencing (TGS) technology, some prevalent assembly algorithms have been proposed to generate high-quality chromosome-level assemblies. However, due to the genome complexity, the length of short reads, and the high error rate of long reads, contigs produced by assembly may contain misassemblies adversely affecting downstream data analysis. Therefore, several read-based and reference-based methods for misassembly identification have been developed to improve assembly quality. This work primarily reviewed the development of DNA sequencing technologies and summarized sequencing data simulation methods, sequencing error correction methods, various mainstream sequence assembly algorithms, and misassembly identification methods. A large amount of computation makes the sequence assembly problem more challenging, and therefore, it is necessary to develop more efficient and accurate assembly algorithms and alternative algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07919-8DOI Listing

Publication Analysis

Top Keywords

assembly algorithms
24
sequence assembly
16
misassembly identification
12
assembly
10
algorithms misassembly
8
identification methods
8
algorithms
7
methods
5
sequencing
5
genome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!