For plasma spectroscopy, Stokes spectropolarimetry is used as a method to spatially invert the viewing-chord-integrated spectrum on the basis of the correspondence between the given magnetic field profile along the viewing chord and the Zeeman effect appearing on the spectrum. Its application to fusion-related toroidal plasmas is, however, limited owing to the low spatial resolution as a result of the difficulty in distinguishing between the Zeeman and Doppler effects. To resolve this issue, we increased the relative magnitude of the Zeeman effect by observing a near-infrared emission line on the basis of the greater wavelength dependence of the Zeeman effect than of the Doppler effect. By utilizing the increased Zeeman effect, we are able to invert the measured spectrum with a high spatial resolution by Monte Carlo particle transport simulation and by reproducing the measured spectra with the semiempirical adjustment of the recycling condition at the first walls. The inversion result revealed that when the momentum exchange collisions of atoms are negligible, the velocity distribution of core-fueling atoms is mainly determined by the initial distribution at the time of recycling. The inversion result was compared with that obtained using a two-point emission model used in previous studies. The latter approximately reflects the parameters of atoms near the emissivity peak.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508257PMC
http://dx.doi.org/10.1038/s41598-022-19747-8DOI Listing

Publication Analysis

Top Keywords

stokes spectropolarimetry
8
spatial resolution
8
zeeman doppler
8
inversion result
8
zeeman
5
spatially resolved
4
resolved measurement
4
measurement helium
4
helium atom
4
atom emission
4

Similar Publications

Channeled spectropolarimetry enables real-time measurement of the polarimetric spectral information of the target. A crucial aspect of this technology is the accurate reconstruction of Stokes parameters spectra from the modulated spectra obtained through snapshot measurements. In this paper, a learnable sparse dictionary compressed sensing method is proposed for channeled spectropolarimeter (CSP) spectral reconstruction.

View Article and Find Full Text PDF

Channeled spectropolarimetry (CSP) has emerged as a notable technique due to its unique capacity to instantaneously measure either the polarization state of light or the Mueller matrix of a sample over a broad spectral range. Leveraging the quasi-linear relation between phase retardances of thick birefringent retarders and wavenumber, the target signal undergoes wavelength encoding. For the first time, we present a theoretical framework for the general CSP from a perspective of information theory.

View Article and Find Full Text PDF
Article Synopsis
  • Polarimetry is a technique used to characterize light polarization in fields like biomedicine, astronomy, and materials science, with a focus on using a rotating quarter-wave plate polarimeter for measuring Stokes parameters.
  • This study advances spectropolarimetry by employing a quasi-achromatic biplate retarder for broadband light measurements, addressing the limitations of traditional single-plate models.
  • A novel modeling approach is developed to enhance measurement precision, demonstrating that accurate determination of the biplate's properties leads to significantly improved results in polarization state analysis.
View Article and Find Full Text PDF

For plasma spectroscopy, Stokes spectropolarimetry is used as a method to spatially invert the viewing-chord-integrated spectrum on the basis of the correspondence between the given magnetic field profile along the viewing chord and the Zeeman effect appearing on the spectrum. Its application to fusion-related toroidal plasmas is, however, limited owing to the low spatial resolution as a result of the difficulty in distinguishing between the Zeeman and Doppler effects. To resolve this issue, we increased the relative magnitude of the Zeeman effect by observing a near-infrared emission line on the basis of the greater wavelength dependence of the Zeeman effect than of the Doppler effect.

View Article and Find Full Text PDF

Channeled spectropolarimetry is a snapshot technique for measuring the spectra of Stokes parameters of light by demodulating the measured spectrum. As an indispensable part of the channeled spectropolarimeter, the spectrometer module is far from being perfect to reflect the real modulation spectrum, which further reduces the polarimetric reconstruction accuracy of the channeled spectropolarimeter. Since the modulation spectrum is composed of many continuous narrow-band spectra with high frequency, it is a challenging work to reconstruct it effectively by existing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!