Chop-Chop: The Future of Bacterial Enzymes in Transfusion Medicine.

Transfus Med Rev

Department of Pathology, Massachusetts General Hospital, Boston, MA, USA. Electronic address:

Published: October 2022

The discovery of bacterial enzymes with specificity for IgG antibodies has led to breakthroughs in several autoantibody-mediated diseases. Two such enzymes, IdeS and EndoS, degrade IgG by different mechanisms, and have separately shown promise in numerous animal models of autoimmune diseases. Recently, imlifidase (the international nonproprietary name for IdeS) has advanced to clinical trials, where it has performed remarkably well in desensitizing patients to enable kidney transplantation, and in anti-glomerular basement membrane disease. Conversely, it performed poorly in thrombotic thrombocytopenic purpura. This review summarizes the development of antibody-degrading enzymes, with a discussion of key clinical studies involving imlifidase. The future of the field is also discussed, including the use of these enzymes in other diseases, and the potential for re-dosing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tmrv.2022.05.003DOI Listing

Publication Analysis

Top Keywords

bacterial enzymes
8
enzymes
5
chop-chop future
4
future bacterial
4
enzymes transfusion
4
transfusion medicine
4
medicine discovery
4
discovery bacterial
4
enzymes specificity
4
specificity igg
4

Similar Publications

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.

View Article and Find Full Text PDF

Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.

Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.

View Article and Find Full Text PDF

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

An RNase III-processed sRNA coordinates sialic acid metabolism of during gut colonization.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.

Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!