Background: T cell-mediated antitumor immunity has a vital role in cancer prevention and treatment; however, the immune-suppressive tumor microenvironment (TME) constitutes a significant contributor to immune evasion that weakens antitumor immunity. Here, we explore the relationship between nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the BTB (broad-complex, Tramtrack, bric a brac)/POZ (Poxvirus, and Zinc finger) gene family, and the TME.
Methods: Adoptive cell transfer (ACT) of mouse or human tumor antigen (Ag)-specific CD8 cytotoxic T lymphocytes (CTLs) was tested in an immunocompetent or immunodeficient mouse model of melanoma with or without expression of NAC1. The effects of NAC1 expression on immune evasion in tumor cells were assessed in vitro and in vivo. CRISPR/Cas9, glycolysis analysis, retroviral transduction, quantitative real-time PCR, flow cytometric analysis, immunoblotting, database analyses were used to screen the downstream target and underlying mechanism of NAC1 in tumor cells.
Results: Tumorous expression of NAC1 negatively impacts the CTL-mediated antitumor immunity via lactate dehydrogenase A (LDHA)-mediated suppressive TME. NAC1 positively regulated the expression of LDHA at the transcriptional level, which led to higher accumulation of lactic acid in the TME. This inhibited the cytokine production and induced exhaustion and apoptosis of CTLs, impairing their cell-killing ability. In the immunocompetent and immunodeficient mice, NAC1 depleted melanoma tumors grew significantly slower and had an elevated infiltration of tumor Ag-specific CTLs following ACT, compared with the control groups.
Conclusions: Tumor expression of NAC1 contributes substantially to immune evasion through its regulatory role in LDHA expression and lactic acid production. Thus, therapeutic targeting of NAC1 warrants further exploration as a potential strategy to reinforce cancer immunotherapy, such as the ACT of CTLs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511653 | PMC |
http://dx.doi.org/10.1136/jitc-2022-004856 | DOI Listing |
JCI Insight
January 2025
Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, United States of America.
The nucleus accumbens-associated protein-1 (NAC1) has recently emerged as a pivotal factor in oncogenesis by promoting glycolysis. Deletion of NAC1 in regulatory T cells (Tregs) has been shown to enhance FoxP3 stability, a suppressor of glycolysis. This study delves into the intriguing dual role of NAC1, uncovering that Tregs-specific deletion of NAC1 fosters metabolic fitness in Tregs, thereby promoting tumorigenesis.
View Article and Find Full Text PDFPlant J
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
Non-coding RNAs play crucial roles in plant responses to viral stresses. However, their molecular mechanisms in tea leaf spot responses remain unclear. In this study, using Camellia sinensis, we identified lncRNA81246 as a long non-coding RNA that localizes to both the nucleus and cytoplasm.
View Article and Find Full Text PDFCancer Immunol Res
November 2024
Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China, suzhou, China.
Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer with a low rate of response to immunotherapy such as immune checkpoint blockade (ICB) therapy. Here, we report that nucleus accumbens-associated protein 1 (NAC1), a putative driver of EOC, has a critical role in immune evasion. We showed in murine ovarian cancer models that depleting or inhibiting tumoral NAC1 reduced the recruitment and immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TME), led to significant increases of cytotoxic tumor-infiltrating CD8+ T cells, and promoted antitumor immunity and suppressed tumor progression.
View Article and Find Full Text PDFMol Cancer
September 2024
Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
Triple negative breast cancer (TNBC) is a particularly lethal breast cancer (BC) subtype driven by cancer stem cells (CSCs) and an immunosuppressive microenvironment. Our study reveals that nucleus accumbens associated protein 1 (NAC1), a member of the BTB/POZ gene family, plays a crucial role in TNBC by maintaining tumor stemness and influencing myeloid-derived suppressor cells (MDSCs). High NAC1 expression correlates with worse TNBC prognosis.
View Article and Find Full Text PDFJ Integr Plant Biol
November 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!