The ptsG (hpIIBC) gene, belonging to the glucose-specific phosphotransferase system, encodes the bacterial glucose-specific enzyme IIBC. In this study, the effects of a deletion of the ptsG gene were investigated by metabolome and transcriptome analyses. At the transcriptional level, we identified 970 differentially expressed genes between ΔptsG and sc1401 (Padj<0.05) and 2072 co-expressed genes. Among these genes, those involved in methane metabolism, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, pyruvate metabolism, phosphotransferase system (PTS), biotin metabolism, Two-component system and Terpenoid backbone biosynthesis showed significant changes in the ΔptsG mutant strain. Metabolome analysis revealed that a total of 310 metabolites were identified, including 20 different metabolites (p < 0.05). Among them, 15 metabolites were upregulated and 5 were downregulated in ΔptsG mutant strain. Statistical analysis revealed there were 115 individual metabolites having correlation, of which 89 were positive and 26 negative. These metabolites include amino acids, phosphates, amines, esters, nucleotides, benzoic acid and adenosine, among which amino acids and phosphate metabolites dominate. However, not all of these changes were attributable to changes in mRNA levels and must also be caused by post-transcriptional regulatory processes. The knowledge gained from this lays the foundation for further study on the role of ptsG in the pathogenic process of Glaesserella parasuis (G.parasuis).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2022.105785 | DOI Listing |
ACS Mater Au
November 2024
Department of Biomedical Engineering, University of Calgary, Calgary T2N 1N4, Alberta, Canada.
Advancements in wearable technology have enabled noninvasive health monitoring using biosensors. This research focuses on developing a textile-based sweat glucose sensor using commercially available conductive textiles, evading the complexity of traditional fabrication methods. A comparative analysis of three low-cost conductive textiles, Adafruit 1364, 1167, and 4762, has been conducted for electrochemical glucose detection with glucose-specific enzymes such as glucose oxidase (GOx) and glucose dehydrogenase (GDH).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Cyclic AMP (cAMP) and cAMP receptor protein (CRP) system controls catabolic enzyme expression based on metabolite concentrations in bacteria. Hemolysin co-regulatory protein (Hcp) is well known as a molecular chaperone for virulence factor secretion of the type VI secretion system (T6SS). However, the intracellular role of Hcp involving in bacterial physiological processes remains unknown.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China. Electronic address:
Tremella fuciformis (TF) is a mushroom with rich nutritional and medicinal value. This study aimed to develop an efficient extraction technique for TF polysaccharide (TFP) to enhance its health benefits. TF was subjected to steam explosion (SE) pretreatment at 0.
View Article and Find Full Text PDFNat Commun
September 2024
Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland.
Glucose is the primary source of energy for many organisms and is efficiently taken up by bacteria through a dedicated transport system that exhibits high specificity. In Escherichia coli, the glucose-specific transporter IICB serves as the major glucose transporter and functions as a component of the phosphoenolpyruvate-dependent phosphotransferase system. Here, we report cryo-electron microscopy (cryo-EM) structures of the glucose-bound IICB protein.
View Article and Find Full Text PDFNanotechnology
July 2024
Department of Surgery, Divison of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, United States of America.
537 million people worldwide suffer from diabetes mellitus, a problem of glucose management that is related to a number of major health risks, including cardiovascular diseases. There is a need for new, efficient formulations of diabetic medications to address this condition and its related consequences because existing treatments have a number of drawbacks and limits. This encouraged the development of treatment plans to get around some of these restrictions, like low therapeutic drug bioavailability or patients' disobedience to existing therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!