The staphylococcal inhibitory protein SPIN binds to human myeloperoxidase with picomolar affinity but only dampens halide oxidation.

J Biol Chem

University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Vienna, Austria. Electronic address:

Published: November 2022

AI Article Synopsis

  • Myeloperoxidase (MPO) is a vital enzyme in neutrophils that kills pathogens but is inhibited by the protein SPIN from Staphylococcus aureus.
  • SPIN binds to MPO through two domains: a C-terminal domain that facilitates specific binding and an N-terminal domain that uses hydrophobic interactions, limiting MPO's access to larger substrates.
  • SPIN-aureus is a potent inhibitor of MPO, showing potential for therapeutic use against chronic inflammatory diseases linked to excessive MPO activity.

Article Abstract

The heme enzyme myeloperoxidase (MPO) is one of the key players in the neutrophil-mediated killing of invading pathogens as part of the innate immune system. MPO generates antimicrobial oxidants, which indiscriminately and effectively kill phagocytosed pathogens. Staphylococcus aureus, however, is able to escape this fate, in part by secreting a small protein called SPIN (Staphylococcal Peroxidase Inhibitor), which specifically targets and inhibits MPO in a structurally complex manner. Here, we present the first crystal structures of the complex of SPIN-aureus and a truncated version (SPIN-truncated) with mature dimeric leukocyte MPO. We unravel the contributions of the two domains to the kinetics and thermodynamics of SPIN-aureus binding to MPO by using a broad array of complementary biochemical and biophysical methods. The C-terminal "recognition" domain is shown to mediate specific binding to MPO, while interaction of the N-terminal "inhibitory" domain is guided mainly by hydrophobic effects and thus is less sequence dependent. We found that inhibition of MPO is achieved by reducing substrate migration, but SPIN-aureus cannot completely block MPO activity. Its' effectiveness is inversely related to substrate size, with no discernible dependence on other factors. Thus, SPIN-aureus is an extremely high-affinity inhibitor and highly efficient for substrates larger than halogens. As aberrant MPO activity is implicated in a number of chronic inflammatory diseases, SPIN-aureus is the first promising protein inhibitor for specific inhibition of human MPO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615034PMC
http://dx.doi.org/10.1016/j.jbc.2022.102514DOI Listing

Publication Analysis

Top Keywords

mpo
10
binding mpo
8
mpo activity
8
spin-aureus
5
staphylococcal inhibitory
4
inhibitory protein
4
protein spin
4
spin binds
4
binds human
4
human myeloperoxidase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!