Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To evaluate the diagnostic reliability of a web-based Artificial Intelligence program on the detection and classification of dental structures and treatments present on panoramic radiographs.
Methods: A total of 300 orthopantomographies (OPG) were randomly selected for this study. First, the images were visually evaluated by two calibrated operators with radiodiagnosis experience that, after consensus, established the "ground truth". Operators' findings on the radiographs were collected and classified as follows: metal restorations (MR), resin-based restorations (RR), endodontic treatment (ET), Crowns (C) and Implants (I). The orthopantomographies were then anonymously uploaded and automatically analyzed by the web-based software (Denti.Ai). Results were then stored, and a statistical analysis was performed by comparing them with the ground truth in terms of Sensitivity (S), Specificity (E), Positive Predictive Value (PPV) Negative Predictive Value (NPV) and its later representation in the area under (AUC) the Receiver Operating Characteristic (ROC) Curve.
Results: Diagnostic metrics obtained for each study variable were as follows: (MR) S=85.48%, E=87.50%, PPV=82.8%, NPV=42.51%, AUC=0.869; (PR) S=41.11%, E=93.30%, PPV=90.24%, NPV=87.50%, AUC=0.672; (ET) S=91.9%, E=100%, PPV=100%, NPV=94.62%, AUC=0.960; (C) S=89.53%, E=95.79%, PPV=89.53%, NPV=95.79%, AUC=0.927; (I) S, E, PPV, NPV=100%, AUC=1.000.
Conclusions: Findings suggest that the web-based Artificial intelligence software provides a good performance on the detection of implants, crowns, metal fillings and endodontic treatments, not being so accurate on the classification of dental structures or resin-based restorations.
Clinical Significance: General diagnostic and treatment decisions using orthopantomographies can be improved by using web-based artificial intelligence tools, avoiding subjectivity and lapses from the clinician.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdent.2022.104301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!