Radioiodination, nasal nanoformulation and preliminary evaluation of isovanillin: A new potential brain cancer-targeting agent.

Appl Radiat Isot

Egyptian Atomic Energy Authority, Labelled Compounds Department, 13759, Cairo, Egypt.

Published: November 2022

Brain cancer is a challenging disease to treat using conventional approaches. The present investigation aimed to develop a radiopharmaceutical targeting brain cancer based on natural isovanillin. Different parameters were optimized, resulting in high radiolabeling efficiency (97.3 ± 1.2%) and good stability (<48 h). The tracer was formulated for intranasal delivery in a chitosan nanoparticles system with a mean particle size of 141 ± 2 nm, a polydispersity index of 0.23 ± 0.02, and a zeta potential of -17.4 ± 0.3 mV to enhance nasal uptake and surmount the blood-brain barrier. The system was characterized and assessed in-vitro for suitability and specificity and evaluated in-vivo in normal and tumorized mice. The biodistribution profile in brain tumor showed 20.5 ± 0.4 %ID/g localization and cancer cell targeting within 60 min. Improvement in brain tumor uptake resulted from both the nanoformulation and nasal administration of iodoisovanillin. Overall, the reported results encourage the potential use of the nanoformulated labeled compound as an anticancer agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2022.110464DOI Listing

Publication Analysis

Top Keywords

brain cancer
8
radioiodination nasal
4
nasal nanoformulation
4
nanoformulation preliminary
4
preliminary evaluation
4
evaluation isovanillin
4
isovanillin potential
4
potential brain
4
brain cancer-targeting
4
cancer-targeting agent
4

Similar Publications

Site-Specific Molecular Engineering of Nanobody-Glucoside Conjugates for Enhanced Brain Tumor Targeting.

Bioconjug Chem

January 2025

Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Nanobodies play an increasingly prominent role in cancer imaging and therapy. However, their efficacy is often constrained by inadequate tumor penetration and rapid clearance from the bloodstream, particularly in brain tumors due to the intractable blood-brain barrier (BBB). Glycosylation is a favorable strategy for modulating the biological functions of nanobodies, including permeability and pharmacokinetics, but it also leads to heterogeneous glycan structures, which affect the targeting ability, stability, and quality of nanobodies.

View Article and Find Full Text PDF

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

Central Nervous System Metastases in Breast Cancer.

Curr Treat Options Oncol

January 2025

Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

Breast cancer metastasizing to the central nervous system (CNS) encompasses two distinct entities: brain metastases involving the cerebral parenchyma and infiltration of the leptomeningeal space, i.e., leptomeningeal disease.

View Article and Find Full Text PDF

Unidirectional and bidirectional causation between smoking and blood DNA methylation: evidence from twin-based Mendelian randomisation.

Eur J Epidemiol

January 2025

Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA.

Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects.

View Article and Find Full Text PDF

Neuroplasticity in Diffuse Low-grade Gliomas: Backward Modelling of Brain-tumor Interactions Prior to Diagnosis is Needed to Better Predict Recovery after Treatment.

Curr Neurol Neurosci Rep

January 2025

Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.

Purpose Of Review: In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!