This article investigates the neural-network-based adaptive predefined-time tracking control problem for switched nonlinear systems. Neural networks are employed to approximate the unknown part of nonlinear functions. The finite-time differentiators are introduced to estimate the first derivative of the virtual controllers. Then, a novel adaptive predefined-time controller is proposed by utilizing the backstepping control technique and the common Lyapunov function (CLF) method. It is explained by the theoretical analysis that the developed controller guarantees that all signals of the switched closed-loop systems are bounded under arbitrary switchings and the tracking error converges to zero within the predefined time. A simulation is shown to verify the validity of the developed predefined-time control approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2022.3204275DOI Listing

Publication Analysis

Top Keywords

tracking control
8
switched nonlinear
8
nonlinear systems
8
adaptive predefined-time
8
predefined-time
4
predefined-time adaptive
4
adaptive neural
4
neural tracking
4
control
4
control switched
4

Similar Publications

Cross-Cultural Sense-Making of Global Health Crises: A Text Mining Study of Public Opinions on Social Media Related to the COVID-19 Pandemic in Developed and Developing Economies.

J Med Internet Res

January 2025

Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.

Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.

Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.

View Article and Find Full Text PDF

Background: Immersive virtual reality (iVR) has emerged as a training method to prepare medical first responders (MFRs) for mass casualty incidents (MCIs) and disasters in a resource-efficient, flexible, and safe manner. However, systematic evaluations and validations of potential performance indicators for virtual MCI training are still lacking.

Objective: This study aimed to investigate whether different performance indicators based on visual attention, triage performance, and information transmission can be effectively extended to MCI training in iVR by testing if they can discriminate between different levels of expertise.

View Article and Find Full Text PDF

The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.

View Article and Find Full Text PDF

Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.

View Article and Find Full Text PDF

A novel machine learning based framework for developing composite digital biomarkers of disease progression.

Front Digit Health

January 2025

Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, United States.

Background: Current methods of measuring disease progression of neurodegenerative disorders, including Parkinson's disease (PD), largely rely on composite clinical rating scales, which are prone to subjective biases and lack the sensitivity to detect progression signals in a timely manner. Digital health technology (DHT)-derived measures offer potential solutions to provide objective, precise, and sensitive measures that address these limitations. However, the complexity of DHT datasets and the potential to derive numerous digital features that were not previously possible to measure pose challenges, including in selection of the most important digital features and construction of composite digital biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!