Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Membrane thinning by rhomboid proteins has been proposed to reduce hydrophobic mismatch, providing a unique environment for important functions ranging from intramembrane proteolysis to retrotranslocation in protein degradation. We show by in vitro reconstitution and solid-state nuclear magnetic resonance that the lipid environment of the rhomboid protease GlpG influences its activity with an optimal hydrophobic membrane thickness between 24 and 26 Å. While phosphatidylcholine membranes are only negligibly altered by GlpG, in an -relevant lipid mix of phosphatidylethanolamine and phosphatidylglycerol, a thinning by 1.1 Å per leaflet is observed. Protease activity is strongly correlated with membrane thickness and shows no lipid headgroup specificity. We infer from these results that, by adjusting the thickness of specific membrane domains, membrane proteins shape the bilayer for their specific needs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506719 | PMC |
http://dx.doi.org/10.1126/sciadv.abq8303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!