AI Article Synopsis

  • High-Z metal-based nanoscale metal-organic frameworks (nMOFs) with photosensitizing ligands enhance radiation therapy effectiveness through a combined RT-RDT approach.
  • Monte Carlo simulations indicate that Th-DBP nMOF outperforms Hf-DBP due to its superior mass attenuation coefficient, leading to greater radiation dose enhancement.
  • In mouse models, low-dose X-ray treatment using Th-DBP significantly reduced tumor growth, achieving an 88% reduction in colon cancer and 97% in pancreatic cancer.

Article Abstract

High-Z metal-based nanoscale metal-organic frameworks (nMOFs) with photosensitizing ligands can enhance radiation damage to tumors via a unique radiotherapy-radiodynamic therapy (RT-RDT) process. Here we report Monte Carlo (MC) simulation-guided design of a Th-based nMOF built from Th -oxo secondary building units and 5,15-di(p-benzoato)porphyrin (DBP) ligands, Th-DBP, for enhanced RT-RDT. MC simulations revealed that the Th-lattice outperformed the Hf-lattice in radiation dose enhancement owing to its higher mass attenuation coefficient. Upon X-ray or γ-ray radiation, Th-DBP enhanced energy deposition, generated more reactive oxygen species, and induced significantly higher cytotoxicity to cancer cells over the previously reported Hf-DBP nMOF. With low-dose X-ray irradiation, Th-DBP suppressed tumor growth by 88 % in a colon cancer and 97 % in a pancreatic cancer mouse model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647855PMC
http://dx.doi.org/10.1002/anie.202208685DOI Listing

Publication Analysis

Top Keywords

monte carlo
8
carlo simulation-guided
8
simulation-guided design
8
radiotherapy-radiodynamic therapy
8
th-dbp enhanced
8
design thorium-based
4
thorium-based metal-organic
4
metal-organic framework
4
framework efficient
4
efficient radiotherapy-radiodynamic
4

Similar Publications

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Reducing Structural Nonidentifiabilities in Upstream Bioprocess Models Using Profile-Likelihood.

Biotechnol Bioeng

January 2025

Boehringer Ingelheim Pharma GmbH & Co.KG, Biopharmaceuticals Germany, Biberach an der Riß, Germany.

Process models are increasingly used to support upstream process development in the biopharmaceutical industry for process optimization, scale-up and to reduce experimental effort. Parametric unstructured models based on biological mechanisms are highly promising, since they do not require large amounts of data. The critical part in the application is the certainty of the parameter estimates, since uncertainty of the parameter estimates propagates to model predictions and can increase the risk associated with those predictions.

View Article and Find Full Text PDF

Cumulative risk assessment is significant for evaluating the combined exposure to multiple substances, but its widespread acceptance and application have been limited due to the complexity of clarifying and assessing actual exposure. In this study, we conducted a cumulative risk assessment based on hazard-driven criteria to evaluate the co-exposure to elemental contaminants in the diet of the population in Chongqing Municipality. The cumulative risk was calculated and evaluated using Monte Carlo modeling and the modified Reference Point Index (mRPI) method.

View Article and Find Full Text PDF

This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.

View Article and Find Full Text PDF

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!