is an important global pathogen. We were interested in understanding the role of Rv0233, a proposed subunit of the class IB ribonucleotide reductase, and its role in surviving stress conditions. We constructed an in-frame, unmarked deletion strain of and characterized its growth and survival under replicating or non-replicating conditions. We confirmed previous studies that found that Rv0233 is not essential for aerobic growth or survival in the presence of nitrite. We demonstrated that the deletion of Rv0233 does not affect susceptibility to frontline tuberculosis drugs or hydrogen peroxide. The deletion strain survived equally well under nutrient starvation or in hypoxia and was not attenuated for growth in macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.001199 | DOI Listing |
Microbiology (Reading)
September 2022
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
J Bacteriol
February 2009
MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg 2000, South Africa.
Ribonucleotide reductases (RNRs) are crucial to all living cells, since they provide deoxyribonucleotides (dNTPs) for DNA synthesis and repair. In Mycobacterium tuberculosis, a class Ib RNR comprising nrdE- and nrdF2-encoded subunits is essential for growth in vitro. Interestingly, the genome of this obligate human pathogen also contains the nrdF1 (Rv1981c) and nrdB (Rv0233) genes, encoding an alternate class Ib RNR small (R2) subunit and a putative class Ic RNR R2 subunit, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!