The photoconversion of a norbornadiene (NBD) derivative was studied under high-intensity mono- and polychromatic light conditions at high concentrations. The photoisomerization quantum yield (ϕ), proceeding from NBD to its quadricyclane (QC) isomer, was determined using a tunable OPO laser and a solar simulator light source. The solar simulator was designed to mimic the AM1.5G solar spectrum between 300 and 900 nm. Using the OPO laser, ϕ was measured at discrete values between 310 and 350 nm in steps of 10 nm, and a variation between 0.81 and 0.96 was observed. Weighting these values of ϕ with the spectral profile of the solar simulator, an averaged value of 0.87 ± 0.03 was obtained. Determination of ϕ was also performed directly in the solar simulator providing a value of 0.97 ± 0.14, in good agreement with the weighted values from the OPO. Photoisomerization quantum yields were found to decrease slightly at higher concentrations. At high concentrations, we found that correcting for the presence of QC was important due to similar absorption coefficients of the NBD and QC isomers at the absorption tail. Cyclability of the forward and backward NBD/QC conversion was studied over several cycles. The NBD/QC couple exhibited excellent thermal stability, but a slight photodegradation per cycle was observed, increasing with the concentration of the sample. This result indicates that the molecules undergo some intermolecular reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c03583 | DOI Listing |
Heliyon
January 2025
Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFSci Data
January 2025
Sustainability/Net-Zero Office, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
This paper presents an open-source dataset intended to enhance the analysis and optimization of photovoltaic (PV) power generation in urban environments, serving as a valuable resource for various applications in solar energy research and development. The dataset comprises measured PV power generation data and corresponding on-site weather data gathered from 60 grid-connected rooftop PV stations in Hong Kong over a three-year period (2021-2023). The PV power generation data was collected at 5-minute intervals at the inverter-level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!