A solar evaporator that utilizes solar radiation energy can be a renewable approach to deal with energy crisis and fresh water shortage. In this study, a solar evaporator was prepared by assembling composite carbonized wood of L. and biobased hydrogel. The multilayer MXene (TiCT) was embedded in the scaffolding structure of the wood to form composite carbonized wood, where the loose and ordered scaffolding structure of the carbonized wood significantly improves the efficiency of water transportation with increased capillary force. The MXene adsorbed in the carbonized wood has high binding energy with water molecules, leading to reduction of vaporization enthalpy and contact angle. Moreover, the addition of MXene can improve the light absorbance, especially for the infrared and ultraviolet light bands. The hydrogel was fabricated by crosslinking konjac glucomannan and sodium alginate polysaccharides with Ca, and it has a lower thermal conductivity than water and improves the evaporation efficiency by regulating the temperature distribution and concentrating the heat on the surface of the evaporator. This solar evaporator has an evaporation rate of 3.71 kg·m·h and an evaporation efficiency of 129.64% under 2 sun illumination and is available to generate an open-circuit voltage of 1.8 mV after a 20 min hydrovoltaic, demonstrating a high performance and versatility. Also, experiments and numerical simulation were carried out to understand the mechanism and design principles of this solar evaporators.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c11399DOI Listing

Publication Analysis

Top Keywords

carbonized wood
20
solar evaporator
16
composite carbonized
8
scaffolding structure
8
evaporation efficiency
8
solar
6
wood
6
evaporator
5
carbonized
5
highly effective
4

Similar Publications

3D porous carbon electrodes have attracted significant attention for advancing compressible supercapacitors (SCs) in flexible electronics. The micro- and nanoscale architecture critically influences the mechanical and electrochemical performance of these electrodes. However, achieving a balance between high compressive strength, electrochemical stability, and cost-effective sustainable production remains challenging.

View Article and Find Full Text PDF

Optical characterization of dissolved organic carbon (DOC) freshly collected from the circumneutral "white water" of the Rio Solimoes revealed that it had lower aromaticity, lower molecular weight, and a greater autochthonous content than DOC from the acidic "black water" of the Rio Negro. The tambaqui (Colossoma macropomum), a characid member of the Serrasalmidae, is a model neotropical fish that migrates annually between the two rivers. We analysed ionoregulatory responses of the tambaqui over 24 h in ion-poor water at pH 7.

View Article and Find Full Text PDF

Light metal-based nanomaterials are widely used for energy storage due to their high energy density and surface-to-volume ratio. However, their high reactivity is paradoxically both the source of advantageous properties and a hurdle to the fabrication of stable nanostructures. Here, we demonstrate the formation of nanoporous Mg via chemical redox agent-driven dealloying, which ensures minimized surface passivation and results in fine nanostructures with <50 nm of interconnected metallic ligament despite the labile chemical properties of Mg.

View Article and Find Full Text PDF

Bioenergetic trade-offs can reveal the path to superior microbial CO fixation pathways.

mSystems

January 2025

Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.

A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).

View Article and Find Full Text PDF

Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!