The distribution of the thermal neutron flux has a significant impact on the treatment efficacy. We developed an irradiation method of overlapping irradiation fields using intensity modulators for the treatment of superficial tumors with the aim of expanding the indications for accelerator-based boron neutron capture therapy (BNCT). The shape of the intensity modulator was determined and Monte Carlo simulations were carried out to determine the uniformity of the resulting thermal neutron flux distribution. The intensity modulators were then fabricated and irradiation tests were conducted, which resulted in the formation of a uniform thermal neutron flux distribution. Finally, an evaluation of the tumor dose distribution showed that when two irradiation fields overlapped, the minimum tumor dose was 27.4 Gy-eq, which was higher than the tumor control dose of 20 Gy-eq. Furthermore, it was found that the uniformity of the treatment was improved 47% as compared to the treatment that uses a single irradiation field. This clearly demonstrates the effectiveness of this technique and the possibility of expanding the indications to superficially located tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726706 | PMC |
http://dx.doi.org/10.1093/jrr/rrac052 | DOI Listing |
Clin Transl Radiat Oncol
March 2025
Smilow Center for Translational Research, Room 8-136, Univ of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104, USA.
Cardiac stereotactic body radiotherapy is a promising noninvasive treatment for patients with refractory ventricular tachycardia. With the aim to prove feasibility of a novel image guided radiotherapy and heart motion gating device, cardiac proton radiotherapy was performed using a porcine model. Using a novel adaptation of γ - H2AX tissue staining techniques, we have been able to localize a radiation beam in large animal tissue to assess targeting accuracy within a defined field.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Materials Science, University of Milano-Bicocca Via Cozzi 55 Milano I-20125 Italy
Hybrid nanoscintillators, which feature a heavy inorganic nanoparticle conjugated with an organic emitter, represent a promising avenue for advancements in diverse fields, including high-energy physics, homeland security, and biomedicine. Many research studies have shown the suitability of hybrid nanoscintillators for radiation oncology, showing potential to improve therapeutic results compared to traditional protocols. In this work, we studied SiO/ZnO nanoparticles functionalized with porphyrin as a photosensitizer, capable of producing cancer cytotoxic reactive oxygen species for possible use in radio-oncological therapeutics.
View Article and Find Full Text PDFChemSusChem
January 2025
CSIR Central Glass & Ceramic Research Institute, EMDD, 196 Raja S C Mullick Road, 700032, Kolkata, INDIA.
The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11541, Saudi Arabia.
The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts BiO/CdS and MoS/BiO/CdS that are intended for the effective photocatalytic destruction of 4-nitrophenol, a dangerous organic pollutant, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS).
View Article and Find Full Text PDFAgeing Res Rev
January 2025
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:
Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!