Chemical Space Exploration with Active Learning and Alchemical Free Energies.

J Chem Theory Comput

Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany.

Published: October 2022

Drug discovery can be thought of as a search for a needle in a haystack: searching through a large chemical space for the most active compounds. Computational techniques can narrow the search space for experimental follow up, but even they become unaffordable when evaluating large numbers of molecules. Therefore, machine learning (ML) strategies are being developed as computationally cheaper complementary techniques for navigating and triaging large chemical libraries. Here, we explore how an active learning protocol can be combined with first-principles based alchemical free energy calculations to identify high affinity phosphodiesterase 2 (PDE2) inhibitors. We first calibrate the procedure using a set of experimentally characterized PDE2 binders. The optimized protocol is then used prospectively on a large chemical library to navigate toward potent inhibitors. In the active learning cycle, at every iteration a small fraction of compounds is probed by alchemical calculations and the obtained affinities are used to train ML models. With successive rounds, high affinity binders are identified by explicitly evaluating only a small subset of compounds in a large chemical library, thus providing an efficient protocol that robustly identifies a large fraction of true positives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558370PMC
http://dx.doi.org/10.1021/acs.jctc.2c00752DOI Listing

Publication Analysis

Top Keywords

large chemical
16
active learning
12
chemical space
8
alchemical free
8
high affinity
8
chemical library
8
large
6
chemical
5
space exploration
4
active
4

Similar Publications

Integrating climate and physical constraints into assessments of net capture from direct air capture facilities.

Proc Natl Acad Sci U S A

January 2025

Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.

Limiting climate change to targets enshrined in the Paris Agreement will require both deep decarbonization of the energy system and the deployment of carbon dioxide removal at potentially large scale (gigatons of annual removal). Nations are pursuing direct air capture to compensate for inertia in the expansion of low-carbon energy systems, decarbonize hard-to-abate sectors, and address legacy emissions. Global assessments of this technology have failed to integrate factors that affect net capture and removal cost, including ambient conditions like temperature and humidity, as well as emission factors of electricity and natural gas systems.

View Article and Find Full Text PDF

A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.

View Article and Find Full Text PDF

Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.

View Article and Find Full Text PDF

Large enhancement of ferroelectric properties of perovskite oxides via nitrogen incorporation.

Sci Adv

January 2025

State Key Laboratory of Advanced Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.

Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere.

View Article and Find Full Text PDF

Background: Therapeutic monitoring is routinely performed to ensure tacrolimus whole-blood concentrations fall within a predefined target. Despite this, patients still experience inefficacy and toxicity that could be related to variability in free (unbound) tacrolimus exposure. Therefore, the aim of this study was to compare tacrolimus-free plasma (C u ), total plasma (C p ), and whole-blood (C wb ) concentrations in adult kidney transplant recipients and to characterize tacrolimus disposition across different matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!