Design and optimization of oestrogen receptor PROTACs based on 4-hydroxytamoxifen.

Eur J Med Chem

Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Dept. Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. Electronic address:

Published: December 2022

In the last four decades, treatment of oestrogen receptor positive (ER+) breast cancer (BCa), has focused on targeting the estrogenic receptor signaling pathway. This signaling function is pivotal to sustain cell proliferation. Tamoxifen, a competitive inhibitor of oestrogen, has played a major role in therapeutics. However, primary and acquired resistance to hormone blockade occurs in a large subset of these cancers, and new approaches are urgently needed. Aromatase inhibitors and receptor degraders were approved and alternatively used. Yet, resistance appears in the metastatic setting. Here we report the design and synthesis of a series of proteolysis targeting chimeras (PROTACs) that induce the degradation of estrogen receptor alpha in breast cancer MCF-7 (ER+) cells at nanomolar concentration. Using a warhead based on 4-hydroxytamoxifen, bifunctional degraders recruiting either cereblon or the Von Hippel Lindau E3 ligases were synthesized. Our efforts resulted in the discovery of TVHL-1, a potent ERα degrader (DC: 4.5 nM) that we envisage as a useful tool for biological study and a platform for potential therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114770DOI Listing

Publication Analysis

Top Keywords

oestrogen receptor
8
based 4-hydroxytamoxifen
8
breast cancer
8
receptor
5
design optimization
4
optimization oestrogen
4
receptor protacs
4
protacs based
4
4-hydroxytamoxifen decades
4
decades treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!