The mechanical stability of implant coatings is crucial for medical approval and transfer to clinical applications. Here, electrophoretic deposition (EPD) is a versatile coating technique, previously shown to cause significant post-surgery impedance reduction of brain stimulation platinum electrodes. However, the mechanical stability of the resulting coating has been rarely systematically investigated. In this work, pulsed-DC EPD of laser-generated platinum nanoparticles (PtNPs) on Pt-based, 3D neural electrodes is performed and the in vitro mechanical stability is examined using agarose gel, adhesive tape, and ultrasonication-based stress tests. EPD-generated coatings are highly stable inside simulated brain environments represented by agarose gel tests as well as after in vivo stimulation experiments. Electrochemical stability of the NP-modified surfaces is tested via cyclic voltammetry and that multiple scans may improve coating stability could be verified, indicated by higher signal stability following highly invasive adhesive tape stress tests. The brain sections post neural stimulation in rats are analyzed via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Measurements reveal higher levels of Pt near the region stimulated with coated electrodes, in comparison to uncoated controls. Even though local concentrations in the vicinity of the implanted electrode are elevated, the total Pt mass found is below systemic toxicologically relevant concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468750PMC
http://dx.doi.org/10.1002/adhm.202102637DOI Listing

Publication Analysis

Top Keywords

mechanical stability
16
electrophoretic deposition
8
agarose gel
8
adhesive tape
8
stress tests
8
stability
6
mechanical
4
stability nano-coatings
4
nano-coatings clinically
4
clinically applicable
4

Similar Publications

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!