Malaria is a serious and lethal disease that has been reported by the World Health Organization (WHO), with an estimated 219 million new cases and 435,000 deaths globally. The most frequent malaria detection method relies mainly on the specialists who examine the samples under a microscope. Therefore, a computerized malaria diagnosis system is required. In this article, malaria cell segmentation and classification methods are proposed. The malaria cells are segmented using a color-based k-mean clustering approach on the selected number of clusters. After segmentation, deep features are extracted using pre-trained models such as efficient-net-b0 and shuffle-net, and the best features are selected using the Manta-Ray Foraging Optimization (MRFO) method. Two experiments are performed for classification using 10-fold cross-validation, the first experiment is based on the best features selected from the pre-trained models individually, while the second experiment is performed based on the selection of best features from the fusion of extracted features using both pre-trained models. The proposed method provided an accuracy of 99.2% for classification using the linear kernel of the SVM classifier. An empirical study demonstrates that the fused features vector results are better as compared to the individual best-selected features vector and the existing latest methods published so far.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486170PMC
http://dx.doi.org/10.3389/fpubh.2022.969268DOI Listing

Publication Analysis

Top Keywords

pre-trained models
12
best features
12
foraging optimization
8
optimization mrfo
8
mrfo method
8
features selected
8
features vector
8
features
7
malaria
6
optimized features
4

Similar Publications

Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.

View Article and Find Full Text PDF

Eye disease detection has achieved significant advancements thanks to artificial intelligence (AI) techniques. However, the construction of high-accuracy predictive models still faces challenges, and one reason is the deficiency of the optimizer. This paper presents an efficient optimizer named Success History Adaptive Competitive Swarm Optimizer with Linear Population Reduction (L-SHACSO).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Miin Wu School of Computing, National Cheng Kung University, Tainan, Taiwan.

Background: Alzheimer's disease (AD) has been associated with speech and language impairment. Recent progress in the field has led to the development of automated AD detection using audio-based methods, because it has a great potential for cross-linguistic detection. In this investigation, we utilised a pretrained deep learning model to automatically detect AD, leveraging acoustic data derived from Chinese speech.

View Article and Find Full Text PDF

Background: The human brain is a complex inter-wired system that emerges spontaneous functional fluctuations. In spite of tremendous success in the experimental neuroscience field, a system-level understanding of how brain anatomy supports various neural activities remains elusive.

Method: Capitalizing on the unprecedented amount of neuroimaging data, we present a physics-informed deep model to uncover the coupling mechanism between brain structure and function through the lens of data geometry that is rooted in the widespread wiring topology of connections between distant brain regions.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: A recent study with large samples of electronic health records (EHRs) suggested Shingles vaccination may reduce dementia risk. Although further investigation is needed to pinpoint the underlying mechanism, such observation adds to the evidence for a connection between peripheral and central nervous system immunity. Since microglia is the major cell type implicated in AD genetics, here, we set out to probe the shared biology between microglia in human brain and macrophages in peripheral system, through the common genes that express in both cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!