Stem/progenitor cells are required for maintenance of salivary gland (SG) function and serve as untapped reservoirs to create functional cells. Despite recent advancements in the identification of stem/progenitor pools, in the submandibular gland (SMG), a knowledge gap remains. Furthermore, the contribution to adult SMG homeostasis of stem/progenitor cells originating from embryonic development is unclear. Here, we employ an H2B-GFP embryonic and adult pulse-and-chase system to characterize potential SMG stem/progenitor cells (SGSCs) based on quiescence at different stages. Phenotypical profiling of quiescent cells in the SMG revealed that label-retaining cells (LRCs) of embryonic or adult origin co-localized with CK8+ ductal or vimentin + mesenchymal, but not with CK5+ or CK14 + stem/progenitor cells. These SMG LRCs failed to self-renew while non-label retaining cells displayed differentiation and long-term expansion potential as organoids. Collectively, our data suggest that an active cycling population of cells is responsible for SMG homeostasis with organoid forming potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485076 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.105047 | DOI Listing |
World J Stem Cells
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China.
Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFCell Regen
January 2025
Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr Clinic D, Stanford, CA, MC 584794305, USA.
Salivary gland stem/progenitor cells (SSPCs) hold significant potential for regenerative medicine, especially for patients suffering from salivary gland dysfunction due to various causes such as radiation therapy, Sjögren's syndrome, and aging. This review provides a comprehensive overview of SSPCs, including their characteristics, isolation, culture techniques, differentiation pathways, and their role in tissue regeneration. Additionally, we highlight recent advances in cell- and tissue-based therapies, such as SSPC transplantation and bioengineered organ replacements.
View Article and Find Full Text PDFCells
January 2025
Department of Neurosciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!