Examination of a foot mounted IMU-based methodology for a running gait assessment.

Front Sports Act Living

Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.

Published: September 2022

Gait assessment is essential to understand injury prevention mechanisms during running, where high-impact forces can lead to a range of injuries in the lower extremities. Information regarding the running style to increase efficiency and/or selection of the correct running equipment, such as shoe type, can minimize the risk of injury, e.g., matching a runner's gait to a particular set of cushioning technologies found in modern shoes (neutral/support cushioning). Awareness of training or selection of the correct equipment requires an understanding of a runner's biomechanics, such as determining foot orientation when it strikes the ground. Previous work involved a low-cost approach with a foot-mounted inertial measurement unit (IMU) and an associated zero-crossing-based methodology to objectively understand a runner's biomechanics (in any setting) to learn about shoe selection. Here, an investigation of the previously presented ZC-based methodology is presented only to determine general validity for running gait assessment in a range of running abilities from novice (8 km/h) to experienced (16 km/h+). In comparison to Vicon 3D motion tracking data, the presented approach can extract pronation, foot strike location, and ground contact time with good [ICC > 0.750] to excellent [ICC > 0.900] agreement between 8-12 km/h runs. However, at higher speeds (14 km/h+), the ZC-based approach begins to deteriorate in performance, suggesting that other features and approaches may be more suitable for faster running and sprinting tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485551PMC
http://dx.doi.org/10.3389/fspor.2022.956889DOI Listing

Publication Analysis

Top Keywords

gait assessment
12
running gait
8
selection correct
8
runner's biomechanics
8
running
7
examination foot
4
foot mounted
4
mounted imu-based
4
imu-based methodology
4
methodology running
4

Similar Publications

Transcutaneous vagus nerve stimulation for Parkinson's disease: a systematic review and meta-analysis.

Front Aging Neurosci

January 2025

Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Transcutaneous vagus nerve stimulation (tVNS) has emerged as a novel noninvasive adjunct therapy for advanced Parkinson's disease (PD), yet no quantitative analysis had been conducted to assess its therapeutic effect.

Objectives: This review aimed to investigate the efficacy of tVNS on motor function, other potential clinical targets and its safety in various treatment conditions.

Methods: We searched six databases for randomized controlled trials (RCTs) that involved treating PD patients with tVNS.

View Article and Find Full Text PDF

Multiple sclerosis (MS) unfavorably affects working capacity. The Comprehensive International Classification of Functioning, Disability and Health Core Set for MS (cICF-MS), issued by the World Health Organization, has not yet been extended to evaluate working capacity level (WCL). To evaluate the relative importance of cICF-MS categories in relation to WCL.

View Article and Find Full Text PDF

: This study evaluated changes in selected spatiotemporal and kinematic gait parameters and balance in girls with Adolescent idiopathic scoliosis (AIS) with and without the Chêneau brace. : 15 subjects with scoliosis wearing the Chêneau brace and an equal comparative control group underwent objective gait analysis with the 3D BTS motion caption system. Balance assessment was done with the Kistler platform.

View Article and Find Full Text PDF

Introduction: The purpose of this study was to clarify the impact of an intervention combining exercise, lifestyle guidance, and community-building activities on the walking function of community-dwelling elderly individuals.

Methods: A total of 391 elderly participants (362 females, 29 males), aged 65 and above, were involved in a one-year intervention consisting of physical activities in a health exercise club, community-building activities, and dementia cafes. The walking function was assessed using an artificial intelligence (AI)-based gait analysis tool and health status was evaluated using a questionnaire.

View Article and Find Full Text PDF

Introduction: Aging-related deficits in the physiological properties of skeletal muscles limit the control of dynamic stability during walking. However, the specific causal relationships between these factors remain unclear. This study evaluated the effects of aging-related deficits in muscle properties on dynamic stability during walking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!