Intestinal macrophages are the main participants of intestinal immune homeostasis and intestinal inflammation. Under different environmental stimuli, intestinal macrophages can be polarized into classical activated pro-inflammatory phenotype (M1) and alternative activated anti-inflammatory phenotype (M2). Its different polarization state is the "guide" to promoting the development and regression of inflammation. Under normal circumstances, intestinal macrophages can protect the intestine from inflammatory damage. However, under the influence of some genetic and environmental factors, the polarization imbalance of intestinal M1/M2 macrophages will lead to the imbalance in the regulation of intestinal inflammation and transform the physiological inflammatory response into pathological intestinal injury. In UC patients, the disorder of intestinal inflammation is closely related to the imbalance of intestinal M1/M2 macrophage polarization. Therefore, restoring the balance of M1/M2 macrophage polarization may be a potentially valuable therapeutic strategy for UC. Evidence has shown that traditional Chinese medicine (TCM) has positive therapeutic effects on UC by restoring the balance of M1/M2 macrophage polarization. This review summarizes the clinical evidence of TCM for UC, the vital role of macrophage polarization in the pathophysiology of UC, and the potential mechanism of TCM regulating macrophage polarization in the treatment of UC. We hope this review may provide some new enlightenment for the clinical treatment, fundamental research, and research and development of new Chinese medicine of UC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486102PMC
http://dx.doi.org/10.3389/fphar.2022.999179DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
24
chinese medicine
12
intestinal macrophages
12
intestinal inflammation
12
m1/m2 macrophage
12
intestinal
10
traditional chinese
8
polarization
8
imbalance intestinal
8
intestinal m1/m2
8

Similar Publications

Gut microbiota dysbiosis involved in decabromodiphenyl ether-induced bone homeostasis disorder through inflammaging.

Environ Pollut

January 2025

Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China. Electronic address:

BDE-209 has a causal relationship with adverse health outcomes. However, research on its effect on bone homeostasis is relatively lacking. This study examined the relationship between BDE-209 exposure and bone health, as well as the underlying mechanisms, using both in vitro and in vivo models.

View Article and Find Full Text PDF

Nonylphenol exposure increases the risk of Hirschsprung's disease by inducing macrophage M1 polarization.

Ecotoxicol Environ Saf

January 2025

Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China. Electronic address:

Nonylphenol (NP), a ubiquitous environmental contaminant used as a surfactant in industrial production and classified as an endocrine disruptor, could interfere hormone secretion and exhibit neurotoxicity in organisms. Hirschsprung's disease (HSCR), one of the most frequently observed congenital malformations of the digestive system, arises mainly due to the failure of enteric neural crest cells to migrate to the distal colon during embryonic development. However, the effects of NP exposure on HSCR are largely unknown.

View Article and Find Full Text PDF

4-Octyl Itaconate Alleviates Myocardial Ischemia-Reperfusion Injury Through Promoting Angiogenesis via ERK Signaling Activation.

Adv Sci (Weinh)

January 2025

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P. R. China.

Myocardial ischemia-reperfusion (IR) injury is a critical complication following revascularization therapy for ischemic heart disease. Itaconate, a macrophage-derived metabolite, has been implicated in inflammation and metabolic regulation. This study investigates the protective role of itaconate derivatives against IR injury.

View Article and Find Full Text PDF

Injured Myocardium-Targeted Theranostic Nanoplatform for Multi-Dimensional Immune-Inflammation Regulation in Acute Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.

Pyroptosis is a key mode of programmed cell death during the early stages following acute myocardial infarction (AMI), driving immune-inflammatory responses. Cardiac resident macrophages (CRMs) are the primary mediators of cardiac immunity, and they serve a dual role through their shaping of both myocardial injury and post-AMI myocardial repair. To appropriately regulate AMI-associated inflammation, HM4oRL is herein designed, an innovative bifunctional therapeutic nanoplatform capable of inhibiting cardiomyocyte pyroptosis while reprogramming inflammatory signaling.

View Article and Find Full Text PDF

Sepsis is a severe systemic inflammatory syndrome characterized by a dysregulated immune response to infection, often leading to high mortality rates. The intestine, owing to its distinct structure and physiological environment, plays a pivotal role in the pathophysiology of sepsis. It functions as the "central organ" or "engine" in the progression of sepsis, with intestinal injury exacerbating the condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!