Background: The Pipeline embolization device (PED) is a flow diverter used to treat intracranial aneurysms. In-stent stenosis (ISS) is a common complication of PED placement that can affect long-term outcome. This study aimed to establish a feasible, effective, and reliable model to predict ISS using machine learning methodology.
Methods: We retrospectively examined clinical, laboratory, and imaging data obtained from 435 patients with intracranial aneurysms who underwent PED placement in our center. Aneurysm morphological measurements were manually measured on pre- and posttreatment imaging studies by three experienced neurointerventionalists. ISS was defined as stenosis rate >50% within the PED. We compared the performance of five machine learning algorithms (elastic net (ENT), support vector machine, Xgboost, Gaussian Naïve Bayes, and random forest) in predicting ISS. Shapley additive explanation was applied to provide an explanation for the predictions.
Results: A total of 69 ISS cases (15.2%) were identified. Six predictors of ISS (age, obesity, balloon angioplasty, internal carotid artery location, neck ratio, and coefficient of variation of red cell volume distribution width) were identified. The ENT model had the best predictive performance with a mean area under the receiver operating characteristic curve of 0.709 (95% confidence interval [CI], 0.697-0.721), mean sensitivity of 77.9% (95% CI, 75.1-80.6%), and mean specificity of 63.4% (95% CI, 60.8-65.9%) in Monte Carlo cross-validation. Shapley additive explanation analysis showed that internal carotid artery location was the most important predictor of ISS.
Conclusion: Our machine learning model can predict ISS after PED placement for treatment of intracranial aneurysms and has the potential to improve patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486156 | PMC |
http://dx.doi.org/10.3389/fneur.2022.912984 | DOI Listing |
Curr Eye Res
January 2025
Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.
Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.
AAPS J
January 2025
Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA.
Protein-based therapeutics may elicit undesired immune responses in a subset of patients, leading to the production of anti-drug antibodies (ADA). In some cases, ADAs have been reported to affect the pharmacokinetics, efficacy and/or safety of the drug. Accurate prediction of the ADA response can help drug developers identify the immunogenicity risk of the drug candidates, thereby allowing them to make the necessary modifications to mitigate the immunogenicity.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA.
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Erzincan University, 24002, Erzincan, Turkey.
The aesthetic understanding has found its place in dental clinics and prosthetic dental treatment. Determining the appropriate prosthetic tooth color between the clinician, patient and technician is a difficult process due to metamerism. Metamerism, known as the different perception of the color of an object under different light sources, is caused by the lighting differences between the laboratory and the dental clinic.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden.
Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!