Blue eye disease (BED) is a swine viral infection that affects the pork industry of Mexico. (PRV) is the etiological agent, and the hemagglutinin-neuraminidase protein (HN) is characterized as the best antigen for serological tests, although other structural proteins, including the nucleoprotein (NP) and the matrix (M) protein, have been investigated during the infection of members of the family, generating promising results. Herein, for the first time, we successfully produced and characterized both the NP and M proteins of PRV by using a recombinant strategy in the heterologous system. The ORF of the NP and M genes were cloned in-frame with the pET-SUMO expression vector. Recombinant proteins proved to be a sensitive target to detect seroconversion at 7 days until 28 days in vaccinated mice (BALB/c) by indirect ELISAs. Immunoreactivity was also tested using porcine serum samples, in which antibodies were recognized from early stages to a persistence of PRV infection, which is indicative that these proteins contain properties similar to native antigens. The predicted tertiary structure showed that both proteins have a conserved structure that resembles those found in others . Our results pave the way for developing biotechnological tools based on these proteins for the control and prevention of BED.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504402 | PMC |
http://dx.doi.org/10.3390/v14091946 | DOI Listing |
Adv Sci (Weinh)
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA.
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury.
View Article and Find Full Text PDFSci Rep
January 2025
Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology; Guangzhou First People's Hospital, Guangzhou Medical University, 1 Panfu Road, Yuexiu District, Guangzhou, 510180, China.
Osteoarthritis (OA) is a multi-factorial degenerative joint disease with unclear pathogenesis. Conservative treatments, primarily aimed at pain relief, fail to halt disease progression. Metabolic syndrome has recently been implicated in OA pathogenesis, underscoring the need for novel therapeutic strategies.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Sequencing-based Hi-C technology has been widely used to study the three-dimensional structure of chromatin. More recently, the development of single-cell Hi-C technology has enabled the study of chromatin structural variations between individual cells. However, single-cell Hi-C data are often highly sparse, necessitating the use of imputation algorithms to address insufficient sampling.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China.
Advances in three-dimensional (3D) genomics have revealed the spatial characteristics of chromatin interactions in gene expression regulation, which is crucial for understanding molecular mechanisms in biological processes. High-throughput technologies like ChIA-PET, Hi-C, and their derivatives methods have greatly enhanced our knowledge of 3D chromatin architecture. However, the chromatin interaction mechanisms remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!