Selective Electrochemical Detection of SARS-CoV-2 Using Deep Learning.

Viruses

Chemical and Electrochemical Technology and Innovation (CETI) Laboratory, Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.

Published: August 2022

COVID-19 has been in the headlines for the past two years. Diagnosing this infection with minimal false rates is still an issue even with the advent of multiple rapid antigen tests. Enormous data are being collected every day that could provide insight into reducing the false diagnosis. Machine learning (ML) and deep learning (DL) could be the way forward to process these data and reduce the false diagnosis rates. In this study, ML and DL approaches have been applied to the data set collected using an ultra-fast COVID-19 diagnostic sensor (UFC-19). The ability of ML and DL to specifically detect SARS-CoV-2 signals against SARS-CoV, MERS-CoV, Human CoV, and Influenza was investigated. UFC-19 is an electrochemical sensor that was used to test these virus samples and the obtained current response dataset was used to diagnose SARS-CoV-2 using different algorithms. Our results indicate that the convolution neural networks algorithm could diagnose SARS-CoV-2 samples with a sensitivity of 96.15%, specificity of 98.17%, and accuracy of 97.20%. Combining this DL model with the existing UFC-19 could selectively identify SARS-CoV-2 presence within two minutes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502341PMC
http://dx.doi.org/10.3390/v14091930DOI Listing

Publication Analysis

Top Keywords

deep learning
8
false diagnosis
8
diagnose sars-cov-2
8
sars-cov-2
5
selective electrochemical
4
electrochemical detection
4
detection sars-cov-2
4
sars-cov-2 deep
4
learning covid-19
4
covid-19 headlines
4

Similar Publications

The field of artificial intelligence (AI) has entered a new cycle of intense opportunity, fueled by advances in deep learning, including generative AI. Applications of recent advances affect many aspects of everyday life, yet nowhere is it more important to use this technology safely, effectively, and equitably than in health and health care. Here, as part of the National Academy of Medicine's Vital Directions for Health and Health Care: Priorities for 2025 initiative, which is designed to provide guidance on pressing health care issues for the incoming presidential administration, we describe the steps needed to achieve these goals.

View Article and Find Full Text PDF

Purpose: Predicting long-term anatomical responses in neovascular age-related macular degeneration (nAMD) patients is critical for patient-specific management. This study validates a generative deep learning (DL) model to predict 12-month posttreatment optical coherence tomography (OCT) images and evaluates the impact of incorporating clinical data on predictive performance.

Methods: A total of 533 eyes from 513 treatment-naïve nAMD patients were analyzed.

View Article and Find Full Text PDF

Lanthanide Metal-Organic Framework Flowers for Proteome Profiling and Biomarker Identification in Ultratrace Biofluid Samples.

ACS Nano

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.

Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.

View Article and Find Full Text PDF

Attention-Based Interpretable Multiscale Graph Neural Network for MOFs.

J Chem Theory Comput

January 2025

The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.

View Article and Find Full Text PDF

DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation.

Biomed Phys Eng Express

January 2025

Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China.

In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!