Enhanced Convolutional Neural Network for In Situ AUV Thruster Health Monitoring Using Acoustic Signals.

Sensors (Basel)

Department of Naval Architecture and Ocean Engineering, Chonnam National University, Yeosu 59626, Korea.

Published: September 2022

As the demand for ocean exploration increases, studies are being actively conducted on autonomous underwater vehicles (AUVs) that can efficiently perform various missions. To successfully perform long-term, wide-ranging missions, it is necessary to apply fault diagnosis technology to AUVs. In this study, a system that can monitor the health of in situ AUV thrusters using a convolutional neural network (CNN) was developed. As input data, an acoustic signal that comprehensively contains the mechanical and hydrodynamic information of the AUV thruster was adopted. The acoustic signal was pre-processed into two-dimensional data through continuous wavelet transform. The neural network was trained with three different pre-processing methods and the accuracy was compared. The decibel scale was more effective than the linear scale, and the normalized decibel scale was more effective than the decibel scale. Through tests on off-training conditions that deviate from the neural network learning condition, the developed system properly recognized the distribution characteristics of noise sources even when the operating speed and the thruster rotation speed changed, and correctly diagnosed the state of the thruster. These results showed that the acoustic signal-based CNN can be effectively used for monitoring the health of the AUV's thrusters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502450PMC
http://dx.doi.org/10.3390/s22187073DOI Listing

Publication Analysis

Top Keywords

neural network
16
decibel scale
12
convolutional neural
8
situ auv
8
auv thruster
8
acoustic signal
8
scale effective
8
enhanced convolutional
4
neural
4
network
4

Similar Publications

In Vivo Confocal Microscopy for Automated Detection of Meibomian Gland Dysfunction: A Study Based on Deep Convolutional Neural Networks.

J Imaging Inform Med

January 2025

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.

The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.

View Article and Find Full Text PDF

Rising computed tomography (CT) workloads require more efficient image interpretation methods. Digitally reconstructed radiographs (DRRs), generated from CT data, may enhance workflow efficiency by enabling faster radiological assessments. Various techniques exist for generating DRRs.

View Article and Find Full Text PDF

Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers.

J Imaging Inform Med

January 2025

College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.

View Article and Find Full Text PDF

The Sharp-van der Heijde score (SvH) is crucial for assessing joint damage in rheumatoid arthritis (RA) through radiographic images. However, manual scoring is time-consuming and subject to variability. This study proposes a multistage deep learning model to predict the Overall Sharp Score (OSS) from hand X-ray images.

View Article and Find Full Text PDF

With the emergence of numerous classifications, surgical treatment for adolescent idiopathic scoliosis (AIS) can be guided more effectively. However, surgical decision-making and optimal strategies still lack standardization and personalized customization. Our study aims to devise proper deep learning (DL) models that incorporate key factors influencing surgical outcomes on the coronal plane in AIS patients to facilitate surgical decision-making and predict surgical results for AIS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!