Human action recognition and detection from unmanned aerial vehicles (UAVs), or drones, has emerged as a popular technical challenge in recent years, since it is related to many use case scenarios from environmental monitoring to search and rescue. It faces a number of difficulties mainly due to image acquisition and contents, and processing constraints. Since drones' flying conditions constrain image acquisition, human subjects may appear in images at variable scales, orientations, and occlusion, which makes action recognition more difficult. We explore low-resource methods for ML (machine learning)-based action recognition using a previously collected real-world dataset (the "Okutama-Action" dataset). This dataset contains representative situations for action recognition, yet is controlled for image acquisition parameters such as camera angle or flight altitude. We investigate a combination of object recognition and classifier techniques to support single-image action identification. Our architecture integrates YoloV5 with a gradient boosting classifier; the rationale is to use a scalable and efficient object recognition system coupled with a classifier that is able to incorporate samples of variable difficulty. In an ablation study, we test different architectures of YoloV5 and evaluate the performance of our method on Okutama-Action dataset. Our approach outperformed previous architectures applied to the Okutama dataset, which differed by their object identification and classification pipeline: we hypothesize that this is a consequence of both YoloV5 performance and the overall adequacy of our pipeline to the specificities of the Okutama dataset in terms of bias-variance tradeoff.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503017PMC
http://dx.doi.org/10.3390/s22187020DOI Listing

Publication Analysis

Top Keywords

action recognition
16
image acquisition
12
gradient boosting
8
object recognition
8
okutama dataset
8
recognition
6
dataset
6
action
5
detecting human
4
human actions
4

Similar Publications

Mitigating Data Leakage in a WiFi CSI Benchmark for Human Action Recognition.

Sensors (Basel)

December 2024

Nokia Bell Labs, 1082 Budapest, Hungary.

Human action recognition using WiFi channel state information (CSI) has gained attention due to its non-intrusive nature and potential applications in healthcare, smart environments, and security. However, the reliability of methods developed for CSI-based action recognition is often contingent on the quality of the datasets and evaluation protocols used. In this paper, we uncovered a critical data leakage issue, which arises from improper data partitioning, in a widely used WiFi CSI benchmark dataset.

View Article and Find Full Text PDF

Public transportation systems play a vital role in modern cities, but they face growing security challenges, particularly related to incidents of violence. Detecting and responding to violence in real time is crucial for ensuring passenger safety and the smooth operation of these transport networks. To address this issue, we propose an advanced artificial intelligence (AI) solution for identifying unsafe behaviours in public transport.

View Article and Find Full Text PDF

: Sudden cardiac arrest (SCA) is a severe medical condition involving the cessation of the heart's mechanical activity. Following the chain of survival, which includes early recognition and calling for help, early initiation of cardiopulmonary resuscitation (CPR), early defibrillation, and post-resuscitation care, offers the greatest chances of saving a person who has experienced SCA. The aim of this study was to analyze cases of out-of-hospital cardiac arrest (OHCA) and assess the actions taken by bystanders.

View Article and Find Full Text PDF

After a fracture, patients have reduced willingness to bend and extend their elbow joint due to pain, resulting in muscle atrophy, contracture, and stiffness around the elbow. Moreover, this may lead to progressive atrophy of the muscles around the elbow, resulting in permanent functional loss. Currently, a goniometer is used to measure the range of motion, ROM, to evaluate the recovery of the affected limb.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder among children and adolescents. Behavioral detection and analysis play a crucial role in ADHD diagnosis and assessment by objectively quantifying hyperactivity and impulsivity symptoms. Existing video-based action recognition algorithms focus on object or interpersonal interactions, they may overlook ADHD-specific behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!