Non-orthogonal multiple access (NOMA) has great potential to implement the fifth-generation (5G) requirements of wireless communication. For a NOMA traditional detection method, successive interference cancellation (SIC) plays a vital role at the receiver side for both uplink and downlink transmission. Due to the complex multipath channel environment and prorogation of error problems, the traditional SIC method has a limited performance. To overcome the limitation of traditional detection methods, the deep-learning method has an advantage for the highly efficient tool. In this paper, a deep neural network which has bi-directional long short-term memory (Bi-LSTM) for multiuser uplink channel estimation (CE) and signal detection of the originally transmitted signal is proposed. Unlike the traditional CE schemes, the proposed Bi-LSTM model can directly recover multiuser transmission signals suffering from channel distortion. In the offline training stage, the Bi-LTSM model is trained using simulation data based on channel statistics. Then, the trained model is used to recover the transmitted symbols in the online deployment stage. In the simulation results, the performance of the proposed model is compared with the convolutional neural network model and traditional CE schemes such as MMSE and LS. It is shown that the proposed method provides feasible improvements in performance in terms of symbol-error rate and signal-to-noise ratio, making it suitable for 5G wireless communication and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504792PMC
http://dx.doi.org/10.3390/s22186994DOI Listing

Publication Analysis

Top Keywords

neural network
12
deep neural
8
wireless communication
8
traditional detection
8
traditional schemes
8
traditional
5
model
5
multi-user joint
4
detection
4
joint detection
4

Similar Publications

The role of the hippocampus in working memory and word reading: Novel neural correlates of reading among youth living in the context of economic disadvantage.

Dev Cogn Neurosci

December 2024

Child Mind Institute, New York, NY, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA. Electronic address:

A left-lateralized cortical reading circuit underlies successful reading and fails to engage in individuals with reading problems. Studies identifying this circuit included youth from economically advantaged backgrounds and focused on cortical, not subcortical, structures. However, among youth with low scores on reading tests who are living in the context of economic disadvantage, this brain network is actively engaged during reading, despite persistent reading problems.

View Article and Find Full Text PDF

A comprehensive scoping review on machine learning-based fetal echocardiography analysis.

Comput Biol Med

January 2025

Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.

Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of fetal echocardiographic analysis; this review presents the findings from a literature review in this area. Searches were queried at leading indexing platforms ACM, IEEE Xplore, PubMed, Scopus, and Web of Science, including papers published until July 2023.

View Article and Find Full Text PDF

Machine learning outperforms humans in microplastic characterization and reveals human labelling errors in FTIR data.

J Hazard Mater

December 2024

Discipline of Chemistry, The University of Newcastle, University Drive, Newcastle, New South Whales 2308, Australia; School of Chemistry, Monash University, Wellington Road, Melbourne, Victoria 3800, Australia. Electronic address:

Microplastics are ubiquitous and appear to be harmful, however, the full extent to which these inflict harm has not been fully elucidated. Analysing environmental sample data is challenging, as the complexity in real data makes both automated and manual analysis either unreliable or time-consuming. To address challenges, we explored a dense feed-forward neural network (DNN) for classifying Fourier transform infrared (FTIR) spectroscopic data.

View Article and Find Full Text PDF

Spatially constrained hyperpolarized 13C MRI pharmacokinetic rate constant map estimation using a digital brain phantom and a U-Net.

J Magn Reson

January 2025

UC Berkeley - UCSF Graduate Program in Bioengineering, 1700 4th St, San Francisco, CA 94158, USA; Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th St, San Francisco, CA 94158, USA.

Fitting rate constants to Hyperpolarized [1-C]Pyruvate (HP C13) MRI data is a promising approach for quantifying metabolism in vivo. Current methods typically fit each voxel of the dataset using a least-squares objective. With these methods, each voxel is considered independently, and the spatial relationships are not considered during fitting.

View Article and Find Full Text PDF

Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.

Med Image Anal

January 2025

Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea. Electronic address:

This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!