A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic Assessment of Aphasic Speech Sensed by Audio Sensors for Classification into Aphasia Severity Levels to Recommend Speech Therapies. | LitMetric

Aphasia is a type of speech disorder that can cause speech defects in a person. Identifying the severity level of the aphasia patient is critical for the rehabilitation process. In this research, we identify ten aphasia severity levels motivated by specific speech therapies based on the presence or absence of identified characteristics in aphasic speech in order to give more specific treatment to the patient. In the aphasia severity level classification process, we experiment on different speech feature extraction techniques, lengths of input audio samples, and machine learning classifiers toward classification performance. Aphasic speech is required to be sensed by an audio sensor and then recorded and divided into audio frames and passed through an audio feature extractor before feeding into the machine learning classifier. According to the results, the mel frequency cepstral coefficient (MFCC) is the most suitable audio feature extraction method for the aphasic speech level classification process, as it outperformed the classification performance of all mel-spectrogram, chroma, and zero crossing rates by a large margin. Furthermore, the classification performance is higher when 20 s audio samples are used compared with 10 s chunks, even though the performance gap is narrow. Finally, the deep neural network approach resulted in the best classification performance, which was slightly better than both K-nearest neighbor (KNN) and random forest classifiers, and it was significantly better than decision tree algorithms. Therefore, the study shows that aphasia level classification can be completed with accuracy, precision, recall, and F1-score values of 0.99 using MFCC for 20 s audio samples using the deep neural network approach in order to recommend corresponding speech therapy for the identified level. A web application was developed for English-speaking aphasia patients to self-diagnose the severity level and engage in speech therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501827PMC
http://dx.doi.org/10.3390/s22186966DOI Listing

Publication Analysis

Top Keywords

aphasic speech
16
classification performance
16
aphasia severity
12
speech therapies
12
severity level
12
level classification
12
audio samples
12
speech
11
audio
8
sensed audio
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!