A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Real-Time Cup-Detection Method Based on YOLOv3 for Inventory Management. | LitMetric

A Real-Time Cup-Detection Method Based on YOLOv3 for Inventory Management.

Sensors (Basel)

School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China.

Published: September 2022

Inventory is the basis of business activities; inventory management helps industries keep their inventories stocked with reasonable quantities, which ensures consumers demand while minimizing storage costs. The traditional manual inventory management has low efficiency and a high labor cost. In this paper, we used improved YOLOv3 to detect the cups stored on the warehouse shelves and counted their numbers to realize automated inventory management. The warehouse images are collected by the camera and transmitted to the industrial computer, which runs the YOLOv3 network. There are three feature maps in YOLOv3, the two smaller feature maps and the structure behind them are removed, and the k-means algorithm is used to optimize the default anchor size. Moreover, the detection range is limited to a specified area. Experiments show that, by eliminating those two feature maps, the network parameter is reduced from 235 MB to 212 MB, and detection FPS is improved from 48.15 to 54.88 while mAP is improved from 95.65% to 96.65% on our test dataset. The new anchors obtained by the k-means algorithm further improve the mAP to 96.82%. With those improvements, the average error rate of detection is reduced to 1.61%. Restricted detection areas eliminate irrelevant items to ensure the high accuracy of the detection result. The accurately counted number of cups and its change provide significant data for inventory management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502084PMC
http://dx.doi.org/10.3390/s22186956DOI Listing

Publication Analysis

Top Keywords

inventory management
20
feature maps
12
k-means algorithm
8
inventory
6
management
5
detection
5
real-time cup-detection
4
cup-detection method
4
method based
4
yolov3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!