This work presents an inductive wireless power transfer system for powering an endoscopy capsule supplying energy to power electronic devices allocated inside a capsule of ≈26.1 mm × 9 mm. A receiver with three coils in quadrature with dimensions of ≈9 mm × 9 mm × 10 mm is located inside the capsule, moving freely inside a transmitter coil with 380 mm diameter through translations and revolutions. The proposed system tracks the variations of the equivalent magnetic coupling coefficient compensating misalignments between the transmitter and receiver coils. The power on the load is estimated and optimized from the transmitter, and the tracking control is performed by actuating on a capacitance in the matching network and on the voltage source frequency. The proposed system can prevent load overheating by limiting the power via adjusting of the magnitude of voltage source VS. Experimental results with uncertainties analysis reveal that, even at low magnetic coupling coefficients ranging from (1.7 × 10-3, 3.5 × 10-3), the power on the load can be held within the range of 100-130 mW. These results are achieved with any position of the capsule in the space, limited by the diameter of the transmitter coil and height of 200 mm when adjusting the series capacitance of the transmitter in the range (17.4, 19.4) pF and the frequency of the power source in the range (802.1, 809.5) kHz.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506451 | PMC |
http://dx.doi.org/10.3390/s22186924 | DOI Listing |
Sheng Wu Gong Cheng Xue Bao
January 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
Concrete is widely used in building construction, civil engineering, roads, bridges, etc., but concrete cracking remains a major issue in the engineering industry. To develop an effective and feasible concrete repair technology, this study combined microbial and microencapsulation technologies to prepare a multi-layer compound microcapsule using the piercing method.
View Article and Find Full Text PDFPLoS One
January 2025
LP2N, Laboratoire Photonique Numérique et Nanosciences, University Bordeaux, Talence, France.
Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.
View Article and Find Full Text PDFJBJS Essent Surg Tech
January 2025
The Ohio State University College of Medicine, Columbus, Ohio.
Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.
Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).
Vaccines (Basel)
December 2024
Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil.
Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical and Power Engineering, Koszalin University of Technology, Raclawicka Street 15-17, 75-620 Koszalin, Poland.
An ice slurry or an emulsion of a phase change material (PCM) is a multiphase working fluid from the so-called Latent Functional Thermal Fluid (LFTF) group. LFTF is a fluid that uses, in addition to specific heat, the specific enthalpy of the phase change of its components to transfer heat. Another fluid type has joined the LFTF group: a slurry of encapsulated phase change material (PCM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!