Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adversarial machine learning (AML) is a class of data manipulation techniques that cause alterations in the behavior of artificial intelligence (AI) systems while going unnoticed by humans. These alterations can cause serious vulnerabilities to mission-critical AI-enabled applications. This work introduces an AI architecture augmented with adversarial examples and defense algorithms to safeguard, secure, and make more reliable AI systems. This can be conducted by robustifying deep neural network (DNN) classifiers and explicitly focusing on the specific case of convolutional neural networks (CNNs) used in non-trivial manufacturing environments prone to noise, vibrations, and errors when capturing and transferring data. The proposed architecture enables the imitation of the interplay between the attacker and a defender based on the deployment and cross-evaluation of adversarial and defense strategies. The AI architecture enables (i) the creation and usage of in the training process, which robustify the accuracy of CNNs, (ii) the evaluation of to recover the classifiers' accuracy, and (iii) the provision of a to distinguish and report on non-attacked and attacked data. The experimental results show promising results in a hybrid solution combining the defense algorithms and the multiclass discriminator in an effort to revitalize the attacked base models and robustify the DNN classifiers. The proposed architecture is ratified in the context of a real manufacturing environment utilizing datasets stemming from the actual production lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506202 | PMC |
http://dx.doi.org/10.3390/s22186905 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!