A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning. | LitMetric

AI Article Synopsis

  • This study investigates how acoustic emission measurements can help characterize biocomposites in aviation, using advanced fiber optic sensors for more accurate data collection.
  • Researchers applied a convolutional autoencoder to extract both classic and deep features from AE signals, utilizing various machine learning methods for classification.
  • Findings reveal that combining classic and deep features significantly boosts classification accuracy, with neural networks achieving the highest accuracy at 80.9%, demonstrating the effectiveness of complex models over simpler ones.

Article Abstract

This study presents the results of acoustic emission (AE) measurements and characterization in the loading of biocomposites at room and low temperatures that can be observed in the aviation industry. The fiber optic sensors (FOS) that can outperform electrical sensors in challenging operational environments were used. Standard features were extracted from AE measurements, and a convolutional autoencoder (CAE) was applied to extract deep features from AE signals. Different machine learning methods including discriminant analysis (DA), neural networks (NN), and extreme learning machines (ELM) were used for the construction of classifiers. The analysis is focused on the classification of extracted AE features to classify the source material, to evaluate the predictive importance of extracted features, and to evaluate the ability of used FOS for the evaluation of material behavior under challenging low-temperature environments. The results show the robustness of different CAE configurations for deep feature extraction. The combination of classic and deep features always significantly improves classification accuracy. The best classification accuracy (80.9%) was achieved with a neural network model and generally, more complex nonlinear models (NN, ELM) outperform simple models (DA). In all the considered models, the selected combined features always contain both classic and deep features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506553PMC
http://dx.doi.org/10.3390/s22186886DOI Listing

Publication Analysis

Top Keywords

deep features
12
acoustic emission
8
deep feature
8
feature extraction
8
machine learning
8
extracted features
8
classic deep
8
classification accuracy
8
features
7
deep
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!