Monitoring and gathering data on sporting activities holds significant promise for athletes, equipment developers, and physical fitness clinicians. Wireless Body Area Networks are being used in sporting environments as a means of gathering data, providing feedback, and helping to gain understanding of athletic activities. Applying WBANs to skiing situations, which have higher vibration, velocities, and damp environments than many other sports, can open up opportunities to understand the dynamics of skiing equipment behaviors, skiing routes on mountains, and how individuals react when skiing. To support these outcomes, a prototype WBAN-style off the shelf component system called SkiMon was proposed, implemented, and tested. The SkiMon system uses inexpensive ESP8266, Raspberry Pi, and sensor devices to gather high quality motion and location tracking data on skiers in real-world skiing conditions. By using IEEE 802.11b/g/n wireless networks, SkiMon is able to sample data at a minimum of 50 Hz, which is enough to model most ski vibration behaviors. These data results are shown to reflect ground truth 3D maps and the acceleration data comports with earlier works on ski vibration testing. Overall, a WBAN-based commodity components solution shows promise as a high quality sensor platform for tracking and modeling skiing activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503361 | PMC |
http://dx.doi.org/10.3390/s22186882 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!