A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Improved Grey Wolf Optimization with Multi-Strategy Ensemble for Robot Path Planning. | LitMetric

An Improved Grey Wolf Optimization with Multi-Strategy Ensemble for Robot Path Planning.

Sensors (Basel)

School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China.

Published: September 2022

Grey wolf optimization (GWO) is a meta-heuristic algorithm inspired by the hierarchy and hunting behavior of grey wolves. GWO has the superiorities of simpler concept and fewer adjustment parameters, and has been widely used in different fields. However, there are some disadvantages in avoiding prematurity and falling into local optimum. This paper presents an improved grey wolf optimization (IGWO) to ameliorate these drawbacks. Firstly, a modified position update mechanism for pursuing high quality solutions is developed. By designing an ameliorative position update formula, a proper balance between the exploration and exploitation is achieved. Moreover, the leadership hierarchy is strengthened by proposing adaptive weights of , and . Then, a dynamic local optimum escape strategy is proposed to reinforce the ability of the algorithm to escape from the local stagnations. Finally, some individuals are repositioned with the aid of the positions of the leaders. These individuals are pulled to new positions near the leaders, helping to accelerate the convergence of the algorithm. To verify the effectiveness of IGWO, a series of contrast experiments are conducted. On the one hand, IGWO is compared with some state-of-the-art GWO variants and several promising meta-heuristic algorithms on 20 benchmark functions. Experimental results indicate that IGWO performs better than other competitors. On the other hand, the applicability of IGWO is verified by a robot global path planning problem, and simulation results demonstrate that IGWO can plan shorter and safer paths. Therefore, IGWO is successfully applied to the path planning as a new method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504989PMC
http://dx.doi.org/10.3390/s22186843DOI Listing

Publication Analysis

Top Keywords

grey wolf
12
wolf optimization
12
path planning
12
improved grey
8
local optimum
8
position update
8
positions leaders
8
igwo
7
optimization multi-strategy
4
multi-strategy ensemble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!