Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The proliferation of the internet of things (IoT) technology has led to numerous challenges in various life domains, such as healthcare, smart systems, and mission-critical applications. The most critical issue is the security of IoT nodes, networks, and infrastructures. IoT uses the routing protocol for low-power and lossy networks (RPL) for data communication among the devices. RPL comprises a lightweight core and thus does not support high computation and resource-consuming methods for security implementation. Therefore, both IoT and RPL are vulnerable to security attacks, which are broadly categorized into RPL-specific and sensor-network-inherited attacks. Among the most concerning protocol-specific attacks are rank attacks and wormhole attacks in sensor-network-inherited attack types. They target the RPL resources and components including control messages, repair mechanisms, routing topologies, and sensor network resources by consuming. This leads to the collapse of IoT infrastructure. In this paper, a lightweight multiclass classification-based RPL-specific and sensor-network-inherited attack detection model called MC-MLGBM is proposed. A novel dataset was generated through the construction of various network models to address the unavailability of the required dataset, optimal feature selection to improve model performance, and a light gradient boosting machine-based algorithm optimized for a multiclass classification-based attack detection. The results of extensive experiments are demonstrated through several metrics including confusion matrix, accuracy, precision, and recall. For further performance evaluation and to remove any bias, the multiclass-specific metrics were also used to evaluate the model, including cross-entropy, Cohn's kappa, and Matthews correlation coefficient, and then compared with benchmark research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501416 | PMC |
http://dx.doi.org/10.3390/s22186765 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!