In this paper, a surface plasmon resonance (SPR)-based photonic crystal fiber (PCF) sensor is proposed for simultaneously measuring the refractive index (RI) and temperature. In the design, the central air hole and external surface of the proposed PCF are coated with gold films, and an air hole is filled with the temperature-sensitive material (TSM). By introducing the inner and outer gold films and TSM, the RI and temperature can be measured simultaneously at different wavelength regions. The simulation results show that the average wavelength sensitivities of the proposed SPR-based PCF sensor can reach 4520 nm/RIU and 4.83 nm/°C in the RI range of 1.35~1.40 and a temperature range of 20~60 °C, respectively. Moreover, because of using the different wavelength regions for sensing, the RI and temperature detections of the proposed SPR-based PCF sensor can be achieved independently. It is believed that the proposed SPR-based PCF RI and temperature sensor has important applications in biomedicine and in environmental science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504744 | PMC |
http://dx.doi.org/10.3390/polym14183893 | DOI Listing |
Sensors (Basel)
January 2025
School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China.
Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Shiraz university of technology, Shiraz, Iran.
A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.
View Article and Find Full Text PDFSensors (Basel)
December 2024
State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna, 6600, Pabna, Bangladesh.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!