A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Loading Rate and Temperature on the Energy Absorption of 3D-Printed Polymeric Origami Tubes under Quasi-Static Loading. | LitMetric

Owing to deformation in the form of the diamond mode with high-energy absorption capacity, origami thin-walled tubes have attracted considerable attention in recent years. Stamping and welding are mainly employed to produce different types of origami thin-walled tubes. The processing defects and geometric asymmetry may be caused by the manufacturing process, which changes the collapsed mode and decreases the energy-absorbing capacity. In this study, fused filament fabrication (FFF) 3D printing is used to fabricate the origami-ending tube (OET) by integrated formation. Experiments and numerical simulations were conducted to study the influence of loading rate and temperature on the energy absorption of polymeric origami tubes under quasi-static loading. The experiments showed that different constitutive models are needed to capture the complex true stress-strain behavior of 3D printing polylactic acid (PLA) material at different temperatures. The damage model is established and then applied to the numerical simulations, which could predict the collapsed mode and the damage behavior of the OET tubes under different loading rates at 30 °C, 40 °C, and 50 °C. Based on the experiments and the validated numerical model, the influence of loading rate and temperature on the crashworthiness performance of the OET tubes is analyzed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504346PMC
http://dx.doi.org/10.3390/polym14183859DOI Listing

Publication Analysis

Top Keywords

influence loading
12
loading rate
12
rate temperature
12
temperature energy
8
energy absorption
8
polymeric origami
8
origami tubes
8
tubes quasi-static
8
quasi-static loading
8
origami thin-walled
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!