Magnetic sensor systems integrate a sensing element and magnetic field generators to determine their relative position or to measure movement. Typically, the magnetic fields are produced by permanent magnets, which have high intensity but are hard to machine into custom shapes. However, novel solutions using magnetic polymer composites (MPCs) have emerged as field generators due to their low cost, weight and patterning freedom. Here, we present a finite element model developed in COMSOL Multiphysics that allows the design of complex magnetization patterns on these polymer composites, taking into account the geometries of the parts and the magnetic properties of the materials employed. The model, together with the characterization protocol of the materials, has proved to be capable of predicting the magnetization of polymer composites at different temperatures. In addition, the model incorporates the properties of the magnets used during the magnetization process, such as the size, shape and magnetization, as well as the properties of the surrounding elements. This new model facilitates the design of new polymeric parts with complex shapes and magnetization patterns that can be employed as field generators in magnetic sensing systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502312PMC
http://dx.doi.org/10.3390/polym14183713DOI Listing

Publication Analysis

Top Keywords

field generators
12
polymer composites
12
magnetic
8
magnetic polymer
8
finite element
8
magnetization patterns
8
magnetization
5
design arbitrary
4
arbitrary magnetic
4
magnetic patterns
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!