Background And Aims: A compromise in intestinal mucosal functions is associated with several chronic inflammatory diseases. Previously, we reported that obese humans have a reduced expression of intestinal Janus kinase-3 (Jak3), a non-receptor tyrosine kinase, and a deficiency of Jak3 in mice led to predisposition to obesity-associated metabolic syndrome. Since meta-analyses show cognitive impairment as co-morbidity of obesity, the present study demonstrates the mechanistic role of Jak3 in obesity associated cognitive impairment. Our data show that high-fat diet (HFD) suppresses Jak3 expression both in intestinal mucosa and in the brain of wild-type mice.

Methodology: Recapitulating these conditions using global (Jak3-KO) and intestinal epithelial cell-specific conditional (IEC-Jak3-KO) mice and using cognitive testing, western analysis, flow cytometry, immunofluorescence microscopy and 16s rRNA sequencing, we demonstrate that HFD-induced Jak3 deficiency is responsible for cognitive impairments in mice, and these are, in part, specifically due to intestinal epithelial deficiency of Jak3.

Results: We reveal that Jak3 deficiency leads to gut dysbiosis, compromised TREM-2-functions-mediated activation of microglial cells, increased TLR-4 expression and HIF1-α-mediated inflammation in the brain. Together, these lead to compromised microglial-functions-mediated increased deposition of β-amyloid (Aβ) and hyperphosphorylated Tau (pTau), which are responsible for cognitive impairments. Collectively, these data illustrate how the drivers of obesity promote cognitive impairment and demonstrate the underlying mechanism where HFD-mediated impact on IEC-Jak3 deficiency is responsible for Jak3 deficiency in the brain, reduced microglial TREM2 expression, microglial activation and compromised clearance of Aβ and pTau as the mechanism during obesity-associated cognitive impairments.

Conclusion: Thus, we not only demonstrate the mechanism of obesity-associated cognitive impairments but also characterize the tissue-specific role of Jak3 in such conditions through mucosal tolerance, gut-brain axis and regulation of microglial functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505565PMC
http://dx.doi.org/10.3390/nu14183715DOI Listing

Publication Analysis

Top Keywords

cognitive impairments
16
role jak3
12
obesity-associated cognitive
12
cognitive impairment
12
jak3 deficiency
12
jak3
9
cognitive
9
mechanistic role
8
expression intestinal
8
intestinal epithelial
8

Similar Publications

Mannose Promotes β-Amyloid Pathology by Regulating BACE1 Glycosylation in Alzheimer's Disease.

Adv Sci (Weinh)

January 2025

Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China.

Hyperglycemia accelerates Alzheimer's disease (AD) progression, yet the role of monosaccharides remains unclear. Here, it is demonstrated that mannose, a hexose, closely correlates with the pathological characteristics of AD, as confirmed by measuring mannose levels in the brains and serum of AD mice, as well as in the serum of AD patients. AD mice are given mannose by intra-cerebroventricular injection (ICV) or in drinking water to investigate the effects of mannose on cognition and AD pathological progression.

View Article and Find Full Text PDF

Introduction: Deficits in decision-making (DM) can lead to adverse outcomes across multiple domains such as financial management and medical care. By hindering such DM abilities, cognitive impairment (CI) often affects quality of life. Routine screening for CI, however, does not include systematic and comprehensive assessment of DM ability.

View Article and Find Full Text PDF

Introduction: There are insufficient scalable, evidence-based treatments to meet increasing mental health needs of young people. Offering interim, brief interventions for young persons with psychological distress can improve access to care and mitigate adverse effects of long waiting times. This study tests the efficacy of solution-focused brief therapy (SFBT), a strength-based, goal-directed intervention, in adolescents and young adults at a community-based youth mental health service in Singapore.

View Article and Find Full Text PDF

Introduction: Infants born very preterm (VPT, <32 weeks' gestation) are at increased risk for neurodevelopmental impairments including motor, cognitive and behavioural delay. Parents of infants born VPT also have poorer mental health outcomes compared with parents of infants born at term.We have developed an intervention programme called TEDI-Prem (Telehealth for Early Developmental Intervention in babies born very preterm) based on previous research.

View Article and Find Full Text PDF

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!