A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultra-Fast Construction of Novel S-Scheme CuBiO/CuO Heterojunction for Selectively Photocatalytic CO Conversion to CO. | LitMetric

Herein, step-scheme (S-scheme) CuBi2O4/CuO (CBO/CuO) composite films were successfully synthesized on glass substrates by the ultra-fast spraying-calcination method. The photocatalytic activities of the obtained materials for CO2 reduction in the presence of H2O vapor were evaluated under visible light irradiation (λ > 400 nm). Benefiting from the construction of S-scheme heterojunction, the CO, CH4 and O2 yields of the optimal CBO/CuO composite reached 1599.1, 5.1 and 682.2 μmol/m2 after irradiation for 9 h, and the selectivity of the CO product was notably enhanced from below 18.5% to above 98.5% compared with those of the bare samples. In the sixth cycling experiment, the yields of main products decreased by less than 15%, and a high CO selectivity was still kept. The enhanced photocatalytic performance of CO2 reduction was attributed to the efficient separation of photogenerated charge carriers. Based on the photocatalytic activity, band structure and in situ-XPS results, the S-scheme charge transfer mechanism was conformed. The study provides an insight into the design of S-scheme photocatalysts for selective CO2 conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504175PMC
http://dx.doi.org/10.3390/nano12183247DOI Listing

Publication Analysis

Top Keywords

cbo/cuo composite
8
co2 reduction
8
s-scheme
5
ultra-fast construction
4
construction novel
4
novel s-scheme
4
s-scheme cubio/cuo
4
cubio/cuo heterojunction
4
heterojunction selectively
4
photocatalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!