We consider a hybrid nanostructure composed of a semiconductor quantum dot placed near a spherical metallic nanoparticle, and study the effect of the nanoparticle on the population transferral from the ground to the biexciton state of the quantum dot, when using linearly chirped Gaussian pulses. For various values of the system parameters (biexciton energy shift, pulse area and chirp, interparticle distance), we calculate the final population of the biexciton state by performing numerical simulations of the non-linear density matrix equations which describe the coupled system, as well as its interaction with the applied electromagnetic field. We find that for relatively large values of the biexciton energy shift and not very small interparticle distances, the presence of the nanoparticle improves the biexciton state preparation, since it effectively increases the area of the applied pulse. For smaller biexciton energy shifts and smaller distances between the quantum dot and the nanoparticle, the performance is, in general, degraded. However, even in these cases we can still find ranges of parameter values where the population transfer to the biexciton state is accomplished with high fidelity, when using linearly chirped Gaussian pulses. We anticipate that our results may be exploited for the implementation of novel nanoscale photonic devices or future quantum technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505651 | PMC |
http://dx.doi.org/10.3390/nano12183098 | DOI Listing |
Nano Lett
December 2024
Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, 13083-859 Campinas, Brazil.
The interaction of high-frequency surface acoustic waves (SAWs) and excitons in van der Waals heterostructures (vdWHs) offers challenging opportunities to explore novel quantum effects and functionalities. We probe the interaction of neutral excitons, trions, and biexcitons with SAWs in a hBN/WSe/hBN vdWH. We show that neutral excitons respond weakly to the SAW stimulus at 5 K.
View Article and Find Full Text PDFACS Nano
November 2024
Department of Physics, Montana State University, Bozeman, Montana 59718, United States.
Two-dimensional semiconductors exhibit pronounced many-body effects and intense optical responses due to strong Coulombic interactions. Consequently, subtle differences in photoexcitation conditions can strongly influence how the material dissipates energy during thermalization. Here, using multiple excitation spectroscopies, we show that a distinct thermalization pathway emerges at elevated excitation energies, enhancing the formation of trions and charged biexcitons in single-layer WSe by up to 2× and 5× , respectively.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan.
Metal halide perovskite materials (MHPs) are promising for several applications due to their exceptional properties. Understanding excitonic properties is essential for exploiting these materials. For this purpose, we focus on CsPbBr3 single crystals, which have higher crystal quality, are more stable, and have no Rashba effect at low temperatures compared to other 3D MHPs.
View Article and Find Full Text PDFACS Nano
November 2024
Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States.
Quantum information processing demands efficient quantum light sources (QLS) capable of producing high-fidelity single photons or entangled photon pairs. Single epitaxial quantum dots (QDs) have long been proven to be efficient sources of deterministic single photons; however, their production via molecular-beam epitaxy presents scalability challenges. Conversely, colloidal semiconductor QDs offer scalable solution processing and tunable photoluminescence, but suffer from broader linewidths and unstable emissions.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2024
Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
Spherical quantum wells (SQWs) have proven to be excellent materials for suppressing Auger recombination due to their expanded confinement volume. However, research on the factors and mechanisms of their high-intensity optical properties, such as multiexciton properties and third-order optical nonlinearities, remains incomplete, limiting further optimization of these properties. Here, a series of CdS/CdSe (xML)/CdS SQWs with varying CdSe layer thicknesses were prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!