A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Macrophage-Targeted Punicalagin Nanoengineering to Alleviate Methotrexate-Induced Neutropenia: A Molecular Docking, DFT, and MD Simulation Analysis. | LitMetric

Punicalagin is the most bioactive pomegranate polyphenol with high antioxidant and free-radical scavenging activity and can potentially cure different ailments related to the cardiovascular system. The current research work was envisioned to predict the targeting efficiency of punicalagin (PG) nanoparticles to the macrophages, more specifically to bone marrow macrophages. For this, we selected mannose-decorated PLGA-punicalagin nanoparticles (Mn-PLGA-PG), and before formulating this nanocarrier in laboratory settings, we predicted the targeting efficiency of this nanocarrier by in silico analysis. The analysis proceeded with macrophage mannose receptors to be acquainted with the binding affinity and punicalagin-based nanocarrier interactions with this receptor. In silico docking studies of macrophage mannose receptors and punicalagin showed binding interactions on its surface. PG interacted with hydrogen bonds to the charged residue ASP668 and GLY666 and polar residue GLN760 of the Mn receptor. Mannose with a docking score of -5.811 Kcal/mol interacted with four hydrogen bonds and the mannose receptor of macrophage, and in PLGA, it showed a -4.334 Kcal/mol docking score. Further, the analysis proceeded with density functional theory analysis (DFT) and HOMO-LUMO analysis, followed by an extensive 100 ns molecular dynamics simulation to analyse the trajectories showing the slightest deviation and fluctuation. While analysing the ligand and protein interaction, a wonderful interaction was found among the atoms of the ligand and protein residues. This computational study confirms that this nanocarrier could be a promising lead molecule to regulate the incidence of drug-induced neutropenia. Furthermore, experimental validation is required before this can be stated with complete confidence or before human use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505199PMC
http://dx.doi.org/10.3390/molecules27186034DOI Listing

Publication Analysis

Top Keywords

targeting efficiency
8
analysis proceeded
8
macrophage mannose
8
mannose receptors
8
interacted hydrogen
8
hydrogen bonds
8
docking score
8
ligand protein
8
analysis
6
macrophage-targeted punicalagin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!