Cellulose was produced by the modified traditional method with 35% yield from the stem of Sosnovsky hogweed and was characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffractometry, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). For , the degree of crystallinity (approximately 70%) and the glass transition temperature (105-108 °C) were determined. It was found that the whiteness characteristic in the case of was 92% and this significate was obtained without a bleaching procedure using chlorine-containing reagents. In this paper, the possibility of hydrophobization of films by treatment with radiation-synthesized telomers of tetrafluoroethylene is shown. It was found that the contact angle of the telomer-treated cellulose film surface depended on the properties of the telomers (the chemical nature of the solvent, and the initial concentration of tetrafluoroethylene) and could reach 140 degrees.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502274 | PMC |
http://dx.doi.org/10.3390/molecules27186002 | DOI Listing |
Biology (Basel)
December 2024
Key Laboratory City for Study and Utilization of Ethnic Medicinal Plant Resources of Western Guizhou Province, Liupanshui Normal University, Liupanshui 553004, China.
Pathogen-induced fruit decay is a significant threat to the kiwifruit industry, leading to considerable economic losses annually. The cell-wall-degrading enzymes (CWDEs) secreted by these pathogens are crucial for penetrating the cell wall and accessing nutrients. Among them, species are recognized as major causal agents of soft rot in kiwifruit, yet their pathogenic mechanisms are not well understood.
View Article and Find Full Text PDFPLoS One
January 2025
Center for Tobacco and the Environment, San Diego State University, San Diego, California, United States of America.
We investigated the amount and distribution of waste generated by commercial tobacco, electronic cigarette, and cannabis (TEC) use to inform policy options aimed at mitigating the environmental harm caused by these products. Using disproportionate stratified random sampling, we selected 60 census blocks from the eight largest cities in San Diego County, California. We twice surveyed publicly accessible areas in these blocks to quantify TEC waste accumulation and its re-accumulation.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.
Introduction: Typhoid fever is an infectious disease primarily caused by sv. Typhi ( Typhi), a bacterium that causes as many as 20 million infections and 600,000 deaths annually. Asymptomatic chronic carriers of S.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Rattan is a multi-purpose plant resource in the tropical forest treasure house. With its good technological characteristics, it has become an excellent material for the preparation of industry. The original rattan is an important forest product second only to wood and bamboo.
View Article and Find Full Text PDFMolecules
November 2024
Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK.
Blackcurrant pomace (BCP) is an example of an annual, high-volume, under-utilized renewable resource with potential to generate chemicals, materials and bioenergy within the context of a zero-waste biorefinery. Herein, the microwave-assisted isolation, characterization and potential application of defibrillated lignocelluloses from depectinated blackcurrant pomace are reported. Depectination was achieved using citric acid (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!