A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic Study of Tetra-PEG-Based Hydrogel after Pelvic Implantation in Rats. | LitMetric

In vivo metabolism of polyethylene glycol (PEG) hydrogels has rarely been studied. In this study, we prepared a chemically crosslinked hydrogel formulation using 14C-labeled tetra-armed poly (ethylene glycol) succinimidyl succinate (Tetra-PEG-SS) and 3H-labeled crosslinking agent for implantation into the pelvis of Sprague-Dawley (SD) rats. This radioactive labeling technique was used to investigate the radioactivity excretion rates in of feces and urine, the blood exposure time curve, and the radioactivity recovery rate in each tissue over time. We showed that the primary excretion route of the hydrogel was via urine (3H: about 86.4%, 14C: about 90.0%), with fewer portion through feces (3H: about 6.922%, 14C: about 8.16%). The hydrogel metabolites exhibited the highest distribution in the kidney, followed by the jejunal contents; The 3H and 14C radioactivity exposures in the remaining tissues were low. We also showed that the 3H and 14C radioactivity recovery rates in the blood were usually low (<0.10% g−1 at 12 h after implantation), even though, in theory, the hydrogel could be absorbed into the blood through the adjacent tissues. By using a combination of HPLC-MS/MS and offline radioactivity counting method, we established that the tetra-PEG-based hydrogel was mainly metabolized to lower-order PEG polymers and other low-molecular-weight substances in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501824PMC
http://dx.doi.org/10.3390/molecules27185993DOI Listing

Publication Analysis

Top Keywords

radioactivity recovery
8
14c radioactivity
8
metabolic study
4
study tetra-peg-based
4
hydrogel
4
tetra-peg-based hydrogel
4
hydrogel pelvic
4
pelvic implantation
4
implantation rats
4
rats vivo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!