A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Natural Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Total Flavonoid Compounds from Spent Sweet Potato ( L.) Leaves: Optimization and Antioxidant and Bacteriostatic Activity. | LitMetric

Natural deep eutectic solvents (NADESs) coupled with microwave-assisted extraction (MAE) were applied to extract total flavonoid compounds from spent sweet potato (Ipomoea batatas L.) leaves. In this study, ten different NADESs were successfully synthesized for the MAE. Based on single-factor experiments, the response surface methodology (RSM) was applied, and the microwave power, extraction temperature, extraction time, and solid−liquid ratio were further evaluated in order to optimize the yields of total flavonoid compounds. Besides, the extracts were recovered by macroporous resin for the biological activity detection of flavonoid compounds. As a result, NADES-2, synthesized by choline chloride and malic acid (molar ratio 1:2), exhibited the highest extraction yield. After that, the NADES-2-based MAE process was optimized and the optimal conditions were as follows: microwave power of 470 W, extraction temperature of 54 °C, extraction time of 21 min, and solid−liquid ratio of 70 mg/mL. The extraction yield (40.21 ± 0.23 mg rutin equivalents/g sweet potato leaves) of the model validation experiment was demonstrated to be in accordance with the predicted value (40.49 mg rutin equivalents/g sweet potato leaves). In addition, flavonoid compounds were efficiently recovered from NADES-extracts with a high recovery yield (>85%) using AB-8 macroporous resin. The bioactivity experiments in vitro confirmed that total flavonoid compounds had good DPPH and O2−· radical-scavenging activity, as well as inhibitory effects on E. coli, S. aureus, E. carotovora, and B. subtilis. In conclusion, this study provides a green and efficient method to extract flavonoid compounds from spent sweet potato leaves, providing technical support for the development and utilization of sweet potato leaves’ waste.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501105PMC
http://dx.doi.org/10.3390/molecules27185985DOI Listing

Publication Analysis

Top Keywords

flavonoid compounds
28
sweet potato
24
total flavonoid
16
potato leaves
16
compounds spent
12
spent sweet
12
natural deep
8
deep eutectic
8
extraction
8
microwave-assisted extraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!