This study aimed to characterize the chemical properties and bioactivity of an endodontic sealer (GuttaFlow Bioseal) based on polydimethylsiloxane (PDMS) and containing a calcium bioglass as a doping agent. Commercial PDMS-based cement free from calcium bioglass (GuttaFlow 2 and RoekoSeal) were characterized for comparison as well as GuttaFlow 2 doped with dicalcium phosphate dihydrate, hydroxyapatite, or a tricalcium silicate-based cement. IR and Raman analyses were performed on fresh materials as well as after aging tests in Hank’s Balanced Salt Solution (28 d, 37 °C). Under these conditions, the strengthening of the 970 cm−1 Raman band and the appearance of the IR components at 1455−1414, 1015, 868, and 600−559 cm−1 revealed the deposition of B-type carbonated apatite. The Raman I970/I638 and IR A1010/A1258 ratios (markers of apatite-forming ability) showed that bioactivity decreased along with the series: GuttaFlow Bioseal > GuttaFlow 2 > RoekoSeal. The PDMS matrix played a relevant role in bioactivity; in GuttaFlow 2, the crosslinking degree was favorable for Ca2+ adsorption/complexation and the formation of a thin calcium phosphate layer. In the less crosslinked RoekoSeal, such processes did not occur. The doped cements showed bioactivity higher than GuttaFlow 2, suggesting that the particles of the mineralizing agents are spontaneously exposed on the cement surface, although the hydrophobicity of the PDMS matrix slowed down apatite deposition. Relevant properties in the endodontic practice (i.e., setting time, radiopacity, apatite-forming ability) were related to material composition and the crosslinking degree.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504520 | PMC |
http://dx.doi.org/10.3390/molecules27185750 | DOI Listing |
Materials (Basel)
December 2024
National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China.
Silicon oxycarbide (SiOC), Ca- and Mg-modified silicon oxycarbide (SiCaOC and SiMgOC) were synthesized via sol-gel processing with subsequent pyrolysis in an inert gas atmosphere. The physicochemical structures of the materials were characterized by XRD, SEM, FTIR, and Si MAS NMR. Biocompatibility and in vitro bioactivity were detected by MTT, cell adhesion assay, and simulated body fluid (SBF) immersion test.
View Article and Find Full Text PDFBiomater Adv
December 2024
Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28040 Madrid, Spain. Electronic address:
Local delivery of therapeutic ions from bioactive mesoporous glasses (MBGs) is postulated as one of the most promising strategies for regenerative therapy of critical bone defects. Among these ions, Sr cation has been widely considered for this purpose as part of the composition of MBGs. MBGs of chemical composition 75SiO-25-x CaO-5PO-xSrO with x = 0, 2.
View Article and Find Full Text PDFRSC Adv
December 2024
Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
Bioactive glasses and glass-ceramics exhibit osteoconductivity, which is the ability to form a direct bond with living bone tissue. This property is typically assessed by observing the formation of a hydroxyapatite layer using simulated body fluid (SBF), a solution designed to mimic the inorganic constituents of human blood plasma. SBF was developed by Kokubo (T.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL) Chiang Mai 50300 Thailand
In this research, sodium chloride-added calcium sulfate-hydroxyapatite composite bone cements (0.70CaS-0.30HAP)/NaCl were studied.
View Article and Find Full Text PDFBiomimetics (Basel)
August 2024
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
Bioresponsive ceramics, a new concept in ceramic biomaterials, respond to biological molecules or environments, as exemplified by salts composed of calcium ions and phosphate esters (SCPEs). SCPEs have been shown to form apatite in simulated body fluid (SBF) containing alkaline phosphatase (ALP). Thus, surface modification with SCPEs is expected to improve the apatite-forming ability of a material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!