Carotenoids are crucial photosynthetic pigments utilized for light harvesting, energy transfer, and photoprotection. Although most of the enzymes involved in carotenoid biosynthesis in chlorophototrophs are known, some are yet to be identified or fully characterized in certain organisms. A recently characterized enzyme in oxygenic phototrophs is 15--zeta(ζ)-carotene isomerase (Z-ISO), which catalyzes the -to- isomerization of the central 15-15' double bond in 9,15,9'-tri--ζ-carotene to produce 9,9'-di--ζ-carotene during the four-step conversion of phytoene to lycopene. Z-ISO is a heme B-containing enzyme best studied in angiosperms. Homologs of Z-ISO are present in organisms that use the multi-enzyme poly- phytoene desaturation pathway, including algae and cyanobacteria, but appear to be absent in green bacteria. Here we confirm the identity of Z-ISO in the model unicellular cyanobacterium sp. PCC 6803 by showing that the protein encoded by the slr1599 open reading frame has ζ-carotene isomerase activity when produced in . A Δslr1599 mutant synthesizes a normal quota of carotenoids when grown under illumination, where the photolabile 15-15' double bond of 9,15,9'-tri--ζ-carotene is isomerized by light, but accumulates this intermediate and fails to produce 'mature' carotenoid species during light-activated heterotrophic growth, demonstrating the requirement of Z-ISO for carotenoid biosynthesis during periods of darkness. In the absence of a structure of Z-ISO, we analyze AlphaFold models of the , (maize), and enzymes, identifying putative protein ligands for the heme B cofactor and the substrate-binding site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505123PMC
http://dx.doi.org/10.3390/microorganisms10091730DOI Listing

Publication Analysis

Top Keywords

carotenoid biosynthesis
12
isomerase z-iso
8
cyanobacterium pcc
8
pcc 6803
8
15-15' double
8
double bond
8
bond 9159'-tri--ζ-carotene
8
z-iso
7
zeta-carotene isomerase
4
z-iso required
4

Similar Publications

Identifying Disease Associated Multi-Omics Network With Mixed Graphical Models Based on Markov Random Field Model.

Genet Epidemiol

January 2025

Interdisciplinary Program of Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea.

In this article, we proposed a new method named fused mixed graphical model (FMGM), which can infer network structures associated with dichotomous phenotypes. FMGM is based on a pairwise Markov random field model, and statistical analyses including the proposed method were conducted to find biological markers and underlying network structures of the atopic dermatitis (AD) from multiomics data of 6-month-old infants. The performance of FMGM was evaluated with simulations by using synthetic datasets of power-law networks, showing that FMGM had superior performance for identifying the differences of the networks compared to the separate inference with the previous method, causalMGM (F1-scores 0.

View Article and Find Full Text PDF

Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.

View Article and Find Full Text PDF

Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner.

View Article and Find Full Text PDF

Comparative metabolomic analysis of Haematococcus pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions.

World J Microbiol Biotechnol

January 2025

Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China.

Revealing the differences of metabolite profiles of H. pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions was the key issues of the present study. To investigate the optimum NaCl and NaNO concentration and the corresponding metabolic characteristic related to the astaxanthin accumulation in H.

View Article and Find Full Text PDF

Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy.

Brief Bioinform

November 2024

Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!