A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning Algorithm to Predict Obstructive Coronary Artery Disease: Insights from the CorLipid Trial. | LitMetric

Developing risk assessment tools for CAD prediction remains challenging nowadays. We developed an ML predictive algorithm based on metabolic and clinical data for determining the severity of CAD, as assessed via the SYNTAX score. Analytical methods were developed to determine serum blood levels of specific ceramides, acyl-carnitines, fatty acids, and proteins such as galectin-3, adiponectin, and APOB/APOA1 ratio. Patients were grouped into: obstructive CAD (SS > 0) and non-obstructive CAD (SS = 0). A risk prediction algorithm (boosted ensemble algorithm XGBoost) was developed by combining clinical characteristics with established and novel biomarkers to identify patients at high risk for complex CAD. The study population comprised 958 patients (CorLipid trial (NCT04580173)), with no prior CAD, who underwent coronary angiography. Of them, 533 (55.6%) suffered ACS, 170 (17.7%) presented with NSTEMI, 222 (23.2%) with STEMI, and 141 (14.7%) with unstable angina. Of the total sample, 681 (71%) had obstructive CAD. The algorithm dataset was 73 biochemical parameters and metabolic biomarkers as well as anthropometric and medical history variables. The performance of the XGBoost algorithm had an AUC value of 0.725 (95% CI: 0.691−0.759). Thus, a ML model incorporating clinical features in addition to certain metabolic features can estimate the pre-test likelihood of obstructive CAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504538PMC
http://dx.doi.org/10.3390/metabo12090816DOI Listing

Publication Analysis

Top Keywords

obstructive cad
12
corlipid trial
8
cad
8
algorithm
6
machine learning
4
learning algorithm
4
algorithm predict
4
obstructive
4
predict obstructive
4
obstructive coronary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!