A compressible medium represented by pure water saturated by small nonreactive or reactive gas bubbles can be used for generating a propulsive force in large-, medium-, and small-scale thrusters referred to as a pulsed detonation hydroramjet (PDH), which is a novel device for underwater propulsion. The PDH thrust is produced due to the acceleration of bubbly water (BW) in a water guide by periodic shock waves (SWs) and product gas jets generated by pulsed detonations of a fuel-oxidizer mixture. Theoretically, the PDH thrust is proportional to the operation frequency, which depends on both the SW velocity in BW and pulsed detonation frequency. The studies reported in this manuscript were aimed at exploring two possible directions of the improvement of thruster performances, namely, (1) the replacement of chemically nonreacting gas bubbles by chemically reactive ones, and (2) the increase in the pulsed detonation frequency from tens of hertz to some kilohertz. To better understand the SW-to-BW momentum transfer, the interaction of a single SW and a high-frequency (≈7 kHz) sequence of three SWs with chemically inert or active BW containing bubbles of air or stoichiometric acetylene-oxygen mixture was studied experimentally. Single SWs and SW packages were generated by burning or detonating a gaseous stoichiometric acetylene-oxygen or propane-oxygen mixture and transmitting the arising SWs to BW. The initial volume fraction of gas in BW was varied from 2% to 16% with gas bubbles 1.5-4 mm in diameter. The propagation velocity of SWs in BW ranged from 40 to 580 m/s. In experiments with single SWs in chemically active BW, a detonation-like mode of reaction front propagation ("bubbly quasidetonation") was realized. This mode consisted of a SW followed by the front of bubble explosions and was characterized by a considerably higher propagation velocity as compared to the chemically inert BW. The latter could allow increasing the PDH operation frequency and thrust. Experiments with high-frequency SW packages showed that on the one hand, the individual SWs quickly merged, feeding each other and increasing the BW velocity, but on the other hand, the initial gas content for each successive SW decreased and, accordingly, the SW-to-BW momentum transfer worsened. Estimates showed that for a small-scale water guide 0.5 m long, the optimal pulsed detonation frequency was about 50-60 Hz.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500947 | PMC |
http://dx.doi.org/10.3390/mi13091553 | DOI Listing |
The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Background: Histotripsy is a non-invasive, non-ionizing, non-thermal focused ultrasound technique. High amplitude short acoustic pulses converge to create high negative pressures that cavitate endogenous gas into a bubble cloud leading to mechanical tissue destruction. In the United States, histotripsy is approved to treat liver tumors under diagnostic ultrasound guidance but in initial clinical cases, some areas of the liver have not been treated due to bone or gas obstructing the acoustic window for targeting.
View Article and Find Full Text PDFSci Rep
January 2025
Beijing Gilface Technology Co., Ltd., Beijing, 100012, China.
In order to solve the problem of logging calibration without a free pipe in the process of acoustic variable density logging and the subjective problem of the free pipe calibration method, this paper studies an attenuation rate calibration method based on acoustic variable density logging. Using the developed acoustic wave probe response relationship device and the acoustic wave probe calibration device, the response consistency of the receiving probe of the acoustic wave instrument and the frequency of the transmitting probe can be calibrated in the laboratory, and the response consistency and frequency calibration coefficient can be obtained. Through this coefficient, the acoustic wave attenuation rate can be derived.
View Article and Find Full Text PDFCO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
College of Naval Architecture and Shipping, Guangdong Ocean University, Zhanjiang 524088, China.
In recent years, liquid-solid triboelectric nanogenerators (L-S TENGs) have been rapidly developed in the field of liquid energy harvesting and self-powered sensing. This is due to a number of advantages inherent in the technology, including the low cost of fabricated materials, structural diversity, high charge-energy conversion efficiency, environmental friendliness, and a wide range of applications. As liquid phase dielectric materials typically used in L-S TENG, a variety of organic and inorganic single-phase liquids, including distilled water, acidic solutions, sodium chloride solutions, acetone, dimethyl sulfoxide, and acetonitrile, as well as paraffinic oils, have been used in experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!